2025-06-24 11:39来源:本站
Yumm1.7和Yumm3.3小鼠黑色素瘤62细胞系(从耶鲁大学M. Bosenberg获得)在Dulbecco修改后的Eagle的培养基(DMEM)–F12中培养。A375,M249(参考文献63)(从J. Massague,MSKCC获得),KPAR64(摘自J. Downward,Francis Crick Institute)和EPP2(参考文献65)(Ref。65)(从J. Zuber,IMP)中培养在DMEM(Gibco)中。LOX48(从J. Massague,MSKCC获得),CT-26(参考文献66)和NCI-H358细胞系购自美国类型培养物收藏品,并在RPMI-1640(GIBCO)培养。NCI-H358 RTT衍生物是通过在1μMKRAS抑制剂(Amgen)存在下培养NCI-H358亲本细胞来产生的90天,直到细胞变得抗性。如先前所述,生成了Yumm1.7OVA克隆以及所有NTT和RTT衍生物。在100 nm dabrafenib(SelleckChem)中连续培养RTT BRAFI抗药性癌细胞(Yumm1.7和Yumm3.3型号)和所有基因工程衍生物。在10 nm曲妥尼(Selleckchem)中连续培养抗Meki抗药性癌细胞。如先前所述的48,生成了人NTT和RTT黑色素瘤细胞系(A375,M249和LOX),并将RTT细胞保持在1 µM vemurafenib(LC-LABS)上的培养物中。HEK-293T细胞购自Takara(Lenti-X 293T,632180),并在内部生产的DMEM高葡萄糖中培养。BMDC是根据先前描述的协议67的改编版本进行培养的。简而言之,在最初的6-7天内,以每毫升1×106细胞的密度培养细胞。在第4天,添加新鲜培养基以最大程度地减少细胞死亡。之后,将细胞播种进行测定,或者以每毫升300,000个细胞的密度进行计数和重新种子。将BMDC培养在补充的全T细胞培养基中,该培养基补充了200 ng ML – 1 FLT3L-Ig(Bioxcell)和5 ng ML – 1 GM-CSF(内部产生)。在DMEM培养基(Gibco)中培养了骨髓衍生的LY6C+单核细胞。人Mono-Mac-1(从J. Zuber,Imp获得)和Blaer-1 (参考文献68)(从M. gaidt,IMP获得)细胞系在RPMI-1640(Gibco)中培养。所有用于细胞系的培养基均补充10%FBS,2 mM-谷氨酰胺(Gibco)和100 IU ML – 1 Penicillin -streptycin(Thermo Fisher)。再加上丙酮酸钠的1×钠,蓝晶-1和NCI-H358细胞还补充了。将CD8+ T细胞培养在含有10%FBS,2 mM-谷氨酰胺和100 IU ML – 1 Penicillin-链霉素,1倍丙酮酸钠(GIBCO)(GIBCO)(GIBCO),1倍非质子氨基酸(Gibco)的1倍氨基酸(Gibco)(Gibco),20 mm Heips(Gibco)(20 mm hepos)的全T细胞培养基中培养。β-马ereto乙醇(Millipore)。在37°C和5%CO2上培养所有细胞。常规对细胞对支原体污染进行阴性测试。对Yumm1.7,Yumm3.3,Epp2和KPAR细胞系的内部进行了str分析。此外,确认对A375,M249和LOX(BRAFI),CT-26(MEKI)和NCI-H358(KRAS抑制剂)的MAPK抑制剂的敏感性。
所有小鼠均在无病原体条件下繁殖并饲养,外壳温度为22±1°C,55±5%的湿度和14小时的光周期为14小时,黑暗为10小时。在每个实验中,都使用年龄匹配和性别匹配的组。B6.129S(C)-BATF3TM1KMM/J(BATF3 - / - )小鼠,B6(CG)-ZBTB46TM1(HBEGFF)MNZ/J(ZDC-DTR)小鼠,B6.cg-tg(itgax-cre)(itgax-cre)1-1-1REIZ/j(cd11c-cre)IL2RGTM1WJL/SZJ(NSG)小鼠购自杰克逊实验室。B6.CG-RAG2TM1.1CGN/J LY5.2(RAG2 - / - ),BALB/C和C57BL/6J小鼠是从维也纳生物中心内部繁殖设施中获得的。ITGAXCREPTGER2 - / - PTGER4FL/FL小鼠由J. Boettcher(Tum,慕尼黑)提供。对于RAG2 - / - BATF3 - / - 菌株产生,BATF3 - / - 小鼠被杂交到Rag2 - / - 小鼠和纯合子后代(RAG2 - / - / - ×BATF3 - / - )通过基因分型确认,并在随后的实验中使用,以评估CDC1缺乏Act Act Act的情况。对于RAG2 - / - ZDC-DTR菌株的产生,通过基因分型证实了ZDC-DTR小鼠的ZDC-DTR小鼠与RAG2 - / - 小鼠和纯合后代证实,并在随后的实验中使用以评估DC DEPLETIT的影响。为了进行ACT实验和注射Yumm1.7OVA细胞系,使用了RAG2 - / - 小鼠。为了注射Yumm3.3,KPAR和EPP2细胞系,使用C57BL/6小鼠。为了注射CT-26细胞系,使用了BALB/C小鼠。为了产生BMDC和LY6C+单核细胞,从内部繁殖的C57BL/6小鼠收集骨骼(股骨和胫骨)。对于所有上述菌株,使用了6至12周大的小鼠。对于OT-1-luc CD8+ T细胞分离,使用了6-24周龄的OT-1-luc Thy1.1小鼠69。所有鼠标实验均根据我们的许可(GZ:MA58-2260492-2022-22; GZ:340118/2017/25; BMBWF-66.015/0009-V/3B/3B/2019; gz:801161/2018/17; GZ:2024; GZ:2024;修正案)。当达到人道终点时,将小鼠安乐死(例如,体重减轻> 20%,痛苦和疼痛的迹象), 当肿瘤显示连续坏死的迹象或肿瘤达到最大允许的肿瘤体积为1,500 mm3时。
对于皮下注射,用2–4%的异氟烷麻醉小鼠。对于Yumm1.7OVA模型及其所有衍生物,将0.5–1×106 Yumm1.7OVA癌细胞皮下注射到每只小鼠的侧面中,体积为50 µl。对于对侧实验,将交替的侧翼用于注射NTT和RTT细胞,以避免优先生长偏见。对于Yumm3.3模型,将0.3–1×106个细胞皮下注入50 µL的体积。对于CT-26模型,将0.25×106个细胞皮下注入50 µL。对于KPAR,将0.35×106个细胞皮下注入50 µL。对于EPP2LUC细胞系导数,如前所述进行了原位注射。65。简而言之,在加热板上的异氟烷(2-4%)麻醉下进行手术。在剃须腹部的左上象限上进行了一个小切口,并确定了脾脏。胰腺外部化后,对1×106个细胞进行了全额注射。重新定位器官,并用可吸收的6-0 Vicryl缝合线闭合,然后用无菌伤口夹闭合皮肤。动物接受腹膜内(i.p.)注射5 mg kg – 1 carprofen,并在手术后每12-48小时接受一次性注射。每天监测小鼠的健康状况,并通过BLI评估肿瘤负担。将所有细胞系重悬于PBS中,将1:1与Matrigel(Corning)混合在最终注射体积中。每2-4天通过Calliper测量值监测皮下肿瘤,并根据以下公式计算肿瘤体积:体积=(D×D2)/2,其中D和D分别为长肿瘤直径和短肿瘤直径。
从OT-1-luc小鼠中分离出脾脏和淋巴结,并根据制造商的规程,用氯化铵 - 氯化铵裂解缓冲液(Thermo Fisher)进行红细胞裂解。使用Magnisort小鼠CD8+ NAIVE T细胞富集试剂盒(Thermo Fisher)根据制造商的协议进行T细胞分离。T细胞通过将它们播种在涂层的板上,该板上涂有2 µg ML – 1抗CD3(145-2C11,EBISOSCIENCE)过夜,并添加1 µg ML – ML – 1抗CD28(37.51,EBIOSCIESS)和20 NG ML – ML – 1 Carrier-Free-Free-Free-Free-Free IL-2(Biilecelegend)。在存在IL-2的情况下,将T细胞膨胀约6-7天,并在新鲜T细胞培养基中每天保持1×106细胞的浓度。
除非另有说明,否则当肿瘤达到100–150 mm3的体积时,体外激活的OT-1-LUC CD8+ T细胞为4×106。在100 µL PBS的体积中注入小鼠。对于I.T.注射4×106的体外激活的OT-1-luc CD8+ T细胞被注入50 µL PBS的体积。为了测量BLI的T细胞浸润,-luciferin(150 mg kg – 1,Goldbio)被远程注射或通过尾静脉注射到止血小鼠中,并使用Ivis Machine(Caliper Life Sciences)成像小鼠,并使用Live Image Software进行了分析(V..4.4.4.4.44; Caliper sciences; caliper Life Science)。在NTT肿瘤中,在24-48小时内,BLI可以检测到T细胞对肿瘤的募集。最初的募集之后是T细胞膨胀阶段,峰值BLI信号在96至120 h之间。因此,我们将96小时的图像描述为评估免疫允许TME中T细胞扩展的合适时间点。
为了用ICB治疗,小鼠为I.P.当肿瘤达到150-200 mmm3(通常在6至8天之间,在100 µL)中注入抗PD1(克隆RMP1-14,Bioxcell)和抗CTLA4(克隆9D9,Bioxcell)。用200 µg抗PD1/抗CTLA4,具有100 µg抗PD1的CT-26模型和具有100 µg抗PD1的EPP2模型处理了Yumm3.3模型。如图传说所示,每3天进行一次ICB治疗,每3天进行至少持续3周。对照小鼠用同种型对照抗体(大鼠IgG2a抗三硝基苯酚,克隆2A3,生物XCEL和小鼠IgG2B,克隆MPC-11,Bioxcell)处理对照小鼠。对于Cox2i处理,如前所述53,在60:40(DMSO至PEG400,DH2O)的混合物中重新构成了塞来昔布(LC实验室)。Etoricoxib(sellekchem)首先溶解在一小部分DMSO中,然后在1%羧甲基纤维素中溶解。Cox2i每天通过口服烤(30 mg kg – 1)以200 µl的体积给出。对于两个Cox2i族(Celecoxib和Etoricoxib),该处理均在注射后的第3天开始,当时肿瘤可触及,每天一直持续到实验终止。在DMSO中将5-Aza(Sigma-Aldrich)重构为10 mg ML – 1的库存浓度,并在PBS中进一步稀释用于体内治疗,并作为i.p.如前所述54,每3天注射(1 mg kg – 1)每3天100-250 µL。对于NK细胞耗竭,每3天至腹腔注射一次200 µg抗NK1.1(克隆PK136,bioxcell)。注射,从肿瘤诱导后的第1天开始。通过流式细胞仪证实了NK细胞耗竭。为了阻止淋巴结的T细胞出口,给小鼠腹腔注射。在100 µL盐水中注入每只小鼠FTY720(Sigma)20 µg的。在T细胞转移当天开始治疗,并连续5-7天进行治疗。对照小鼠接受了盐水注射。FLT3L(重组FLT3L-Ig,Hum/Hum,bioxcell)处理(100 µL PBS I.P.中的每只小鼠30 µg) 注射后的第3天开始,并连续9天进行。使用Invivomab抗小鼠IFNAR-1(克隆MAR1-5A3,bioxcell)进行体内IFNAR封锁,并给予腹腔注射。(每只小鼠200 µg),在100 µL中。对于IFNγ,使用中和抗小鼠IFNγ单克隆抗体(克隆XMG1.2,bioxcell)。肿瘤植入当天开始治疗,每3天进行一次治疗。Invivomab IgG1同种型对照(Bioxcell)用作对照。对于进行CD8耗竭的实验,用50 µg抗CD8(克隆2.43,内部产生的克隆2.43,内部产生的克隆)处理小鼠,而对照小鼠则用同种型对照(大鼠IgG2B抗钥匙孔limpet limpet Haemocyanin,Clone ltf-2),Clone LTF-2)在Tumor angerapt和Tumor插入3天。
如上所述,将BMDC用FLT3L和GM-CSF培养。分离后的第10-12天,DC用Polyi:C(5 µg ML – 1,Invitrogen)过夜,用重组siinfekl肽(5 µg ML – 1,Genscript)脉冲,并根据Alive MHCII+CD103+CD103+CD11C+细胞对FACS进行排序。接下来,1×106个细胞为50 µl PBS的均为I.T.注射。对照小鼠接受了50 µL PBS。对于直流疫苗,2剂I.T.在肿瘤植入后的第4天和第6天进行注射。
对于骨髓嵌合体的产生,将RAG2 - / - LY5.1小鼠进行了预处理(2×5 Gy),然后再通过i.v将10×106的骨髓细胞转移回106个骨髓细胞。注射。作为供体小鼠,使用了RAG2 - / - LY5.2 ZDC-DTR小鼠。重建8周后,将小鼠用于实验。注射NTT细胞,并通过注射25 µg kg – 1的白喉毒素(Sigma-Aldrich)i.p的体重来耗尽DC。在PBS中,从肿瘤植入当天开始,然后每3天每3-4剂。通过流式细胞术证实了肿瘤内DC的重新效率和耗竭。
使用多乙基亚胺(Avantor),用4,000 ng质粒,2,000 ng的VSV-G质粒和1,000 ng的PAX2质粒转染Lenti-X(HEK-293T)细胞。转染后24小时和48小时收集含病毒的上清液,然后通过0.45 µm滤光片过滤。与收集的病毒与8 µg ML -1多甲烯(Merck)混合的收集病毒转导的细胞系。
产生了来自亲本细胞系的强力霉素可诱导的CAS9(ICAS9)克隆,以允许Cas9的诱导表达。根据最佳的VBC得分70(补充表7)选择SGRNA,并将其克隆到含有紫摩霉素选择标记物和MCHERRY或MCHERRY或EGFP(HU6-SGRNA-PURNA – PURNA-PUROR-MCHERRY/EGFP)的载体中。靶向ROSA26基因座的SGRNA用作KO细胞系的对照。转导后,选择5天的嘌呤霉素(5-8 µg mL – 1)5天。所有SGRNA序列均在补充表7中提供。对于单细胞衍生的克隆细胞系的产生,基于SGRNA骨架上的荧光标记物对FACS进行排序,每孔以1个细胞为96孔板。为了避免在Yumm3.3模型中由抗生素选择标记或荧光团引起的免疫原性,我们用含有CAS9的多合一矢量,感兴趣的SGRNA和EGFP(U6-IT-IT-IT-IT-IT-IT-IT-EF1AS-Cas9-P2A-EGFP)瞬时转染了细胞系。为了瞬时转染,使用了7,000 ng质粒,用聚乙烯亚胺,并建立了单细胞克隆。对于IRF3/7的过表达,从扭曲生物科学中排序合成的cDNA序列,并将其克隆为具有独特选择/荧光标记物(SFFV-IRF3-MCHERRY和SFFV-IRF7 – Puror)的两个不同的表达矢量。转导后,用紫霉素(5-8 µg ml – 1持续5天)选择细胞,并根据麦克环(MCHERRY)表达进行大量FACS。使用含有麦克利和紫霉素耐药盒的空载体设计的相同细胞系被用作对照。靶蛋白的KO和过表达通过基因分型,蛋白质印迹或逆转录(RT – QPCR)的定量PCR证实。对于Yumm1.7和Yumm3.3 PTGS2 KO细胞系,产生了单细胞衍生的克隆细胞系,并在体内测试了一些细胞系的生长动力学。
根据VBC得分70设计了针对PTGER2和PTGER4小鼠基因的SGRNA,并将其克隆到双Hu6-SgrNA-SGRNA-SGRNA-SGRNA-SGRNA-EF1α-MCHERRY-PUROR-PUROR-PUROR BACKBONE(补充表7)。作为对照,我们使用了针对染色体1个基因沙漠的SGRNA。如上所述,生产了慢病毒载体。如上所述,从Cas9-Ot-1小鼠中分离出T细胞,这是J. Zuber(IMP)的礼物。CD3/CD28激活十二小时后,用溶剂载体旋转T细胞在32°C和800G时以1:1的比率旋转1:1 h。感染后12小时,从激活板中除去T细胞,用PBS洗涤,并在20 ng ML – 1 IL-2的情况下培养。病毒转导后30小时对紫霉素进行选择。在ACT之前,对MCHERRY水平进行了评估,并通过功能性的体外测定确认KO。
对于基于流程仪的TME表征,注射后的第7至11天之间隔离肿瘤,切成碎片,并在37°C下用胶原酶A(1 mg ML – 1,Roche)和DNase(20 µg ML – 1,Worthington,Worthington)在37°C下消化1.5 h。通过70 µm滤光片拧紧消化的肿瘤,并重悬于FACS缓冲液(0.5%BSA和2 mM EDTA)中。用抗CD16/32(克隆2.4G2,Pharmingen)在4°C下进行FC块,以避免FC特异性抗体捕获,并在4°C下对细胞表面标记进行染色30分钟。对于细胞内染色,使用了FOXP3转录因子染色试剂盒(EBISoscience)。通过使用可固定的生存能力染料Efluor780(1:1,000,Ebioscience)染色来进行活/死的排除。DC在大多数实验中被定义为活着的CD45+细胞中的MHCII+ CD11C+ CD24+。在总直流中,CDC1被鉴定为CDC2中的CD113+CD11b,为CD103 – CD11B+,炎症CDC2为CD103 – CD11B+AXL+。先前描述了AXL以鉴定炎症CDC2S37。单核细胞定义为LY6C+CD11b+F4/80–,炎症单核细胞被鉴定为LY6A+的单核细胞。先前描述的LY6A鉴定出表达高水平ISGS38的单核细胞。巨噬细胞定义为LY6C – F4/80+CD11b+。使用BD LSR Fortessa机器(BD Biosciences)使用FACS Diva软件(v.9.0.1)进行样品的采集,并使用FlowJo软件(V.10.8或更新)进行分析。对于细胞分类,使用了带有FACS Diva软件(v.9.0.1)的BD ARIA细胞分类器(BD Biosciences)。
以下抗体(所有抗小鼠)用于流式细胞仪染色(目标(克隆,目录数,制造商,稀释))):AXL PE-CY7(Maxl8ds,25-1084-82,Ebioscience,1:200); CD103 PERCP/CYANINE5.5(2E7,121415,生物学,1:100); CD103 PE(2E7,生物学,121405,1:100); CD11b APC(M1/70,17-0112-81,Ebioscience,1:200); CD11b PERCP/CYANINE5.5(M1/70,101229,Biologend,1:200); CD11C BV605(HL3,563057,BD Pharmigen,1:100); CD11C FITC(N418,117305,生物学,1:100); CD24 BV510(M1/69,101831,生物学,1:100); CD24 FITC(M1/69,11-0242-82,Ebioscience,1:100); CD279/PD-1 BV785(29F.1A12,135225,生物学,1:200); CD279/PD-1 FITC(29F.1A12,135213,生物学,1:200); CD40 APC(3/23,124611,Biologend,1:200); CD45 BV711(30-F11,103147,生物学,1:500); CD45 FITC(30-F11,103107,生物学,1:500); CD86 BV510(GL-1,105039,生物学,1:100); CD3 BV605(17a2,564009,BD Horizon,1:100); CD3 AF647(17A2,100209,BD Horizon,1:100); CD3 AF488(17a2,100212,BD Horizon,1:100); CD8A Efluor 450(53-6.7,48-0081-80,Ebioscience,1:100); CD8A AF647(53-6.7,128041,生物学,1:100); MHCI(H-2KB)APC(AF6-88.5.5.3,17-5958-82,Bioscience,1:200); MHCI(H-2KB)PE(AF6-88.5.5.3,17-5958-80,Bioscience,1:200); MHCII(I-A/I-E)Efluor450(M5/114.15.2,48-5321-80,Ebioscience,1:200); MHCII(I-A/I-E)APC(M5/114.15.2,107613,Biology,1:200); NK-1.1 BV711(PK136,108745,生物学,1:100); TCF1 PE(S33-966,564217,BD Pharmigen,1:50); TIM3 BV711(RMT3-23,119727,生物学,1:100); CD88 PE(20/70,135805,生物学,1; 100); LY-6A/E(SCA-1)FITC(D7,108105,生物学,1:100); Siinfekl-HK2B PE(25-D1.16,12-5743-81,Invitrogen,1:100); F4/80 PE(BM8,B123110,生物学,1:200);和Rat IgG1,K同种型对照PE(R3-34,5546,BD Pharmigen)。补充表8中提供了更多信息。
注射后第10至12天之间,通过手术切除肿瘤。如上所述处理组织,并根据活着的CD45-细胞和荧光标记来通过流式细胞仪分离癌细胞。对于癌细胞系和用髓样细胞进行体外测定,将细胞用PBS洗涤,并在液氮中进行快速冻干,并保持在-70°C,直到进一步加工。使用基于磁珠的RNA提取方案(内部产生)提取RNA。简而言之,将细胞与DNase I(NEB)一起裂解并与珠一起孵育,然后进行磁分离。通过用无核酸酶的水进一步洗脱RNA。
根据制造商的说明,使用Lunascript RT Supermix套件(NEB)进行了每样品的1 µg RNA进行cDNA形成的逆转录。根据制造商的协议,用Luna Univeral QPCR Master Mix(NEB)或内部生产的MTD QPCR染料2×HS主混合物用Luna Univers QPCR Master Mix(NEB)使用10 ng cDNA进行RT – QPCR。每个样本包括四个技术重复。RT – QPCR反应在Bio-Rad CFX384实时循环仪中进行,并包含1分钟的初始变性(95°C)和45个在95°C下持续15 s的退火循环,在60°C下持续30 s。基因表达水平的分析由定量循环(CQ)确定。内部控制和管家基因GAPDH用于校正样品质量差异和标准化表达值的差异。QPCR引物对序列在补充表7中列出。
对于癌细胞CM实验,在48小时后收集了汇合癌细胞的上清液(在全T细胞培养基中),通过45 µM滤波器过滤,并在-70°C下冷冻直至进一步使用。将全T细胞培养基补充了20 µm的Cox1/2i吲哚美辛(SelleckChem)或Meki Trametinib(SelleckChem)的5 nm,以评估MAPK和COX1/2活动,然后再进行培养基调节。如上所述,将BMDC分化并在第6天收集。接下来,将0.5-1×106个细胞在CM中的12孔板中一式三份播种,并用10 µg ML – ML – 1 Invivomab抗Mouse Invivomab抗Mouse Ifnar-1抗体或Invivomab IgG1 igG1 igG1同型同型控制(Bioxcell)进行处理。将细胞培养24小时,收集并加工以进行流式细胞仪分析或提取RNA。为了用PGE2和IFNβ处理,在第6天收集细胞,并以每毫升0.5–1×106细胞的浓度播种。将细胞与重组PGE2(100 ng ML – 1,Sigma-Aldrich)和重组小鼠/人IFNβ(R&D Systems)一起处理24-48小时,并以相应数字指示的浓度处理。相同体积的丙酮和PBS分别用作PGE2和IFNβ的对照。
按照制造商的说明,使用单核细胞分离试剂盒(Miltenyi Biotec)直接从CD45.1+ C57BL/6小鼠的骨髓中直接分离LY6C+单核细胞。对于肿瘤内单核细胞的转移,1×106单核细胞为I.T.注射到CD45.2+ rag2 - / - 小鼠中建立的NTT和RTT肿瘤。肿瘤分析肿瘤分析后72小时后分析肿瘤。对于评估PGE2作用的体外测定,将LY6C+单核细胞以每ML的1×106细胞的密度播种,并在重组IL-4和GM-CSF中培养,并在内部生产),并暴露于200 ng ML – 1 PGE2或车辆3或5天。对于CM实验,将单核细胞以每毫升1×106个细胞的密度在CM中从NTT,RTT或RTT IRF3/7细胞中获得,具有或没有20 µM Cox1/2i(Indomethacin)的CM,并在培养基调节期间与10 µg Ml – 1 Invivomab anti-Mouse(随后)IFNAR或不含10 µM anti-Muse(Ifnar – bios)Ifnar – biore(indome)Iffomab anti-biore(If)同种型IgG1控制(bioxcell)。
LY6C+LY6A+或LY6C+LY6A - 单核细胞是从rag2 - / - / - - 小鼠或BALB/C小鼠中生长的NTT肿瘤,并共培养72 h,与幼稚的OT-1 T细胞共培养72 h(1:3比例:1:3比:100,000个单细胞,以300,000幼稚的OT-1细胞为100,000单细胞,先前使用300,000个单细胞),先前使用30分钟。
如前所述68,将BLAER-1细胞转分化为单核细胞。简而言之,通过添加10 ng ML – 1人重组(HR-)IL-3(peprotech),10 ng ML – 1 HR-M-CSF(peprotech)(peprotech)和100 nmβ-erestradiol(sigma-aldrich)来完成blaer-1转分化培养基的新鲜制备。将细胞重悬于转分化培养基中,并以每毫升0.7×106细胞的形式将细胞铺在12孔板中。将细胞在37°C下孵育5-6天,直到分化成熟的单核细胞。对于CM实验,将BLAER-1或MONO-MAC-1人单核细胞以每ml的密度为0.7×106个细胞在CM中从NTT或RTT细胞中获得的CM,从人类黑色素瘤细胞A375,M249和LOX或LOX或NSCLC Cell Line nsclc Cell Line NCI-H358中或不含20 µM coxEN的cox nsclc Cell Line nsclc Cell Line-2 IM coxER中的密度。如上所述,将细胞在CM中培养24小时,并收集以进行RNA提取。
对于不匹配的MHCI单倍型实验,将来自C57BL/6 Origin(H-2KB)的1×106 Yumm1.7ova NTT细胞注入BALB/C(H2-KD)小鼠的侧面。用抗CD8(在100 µL中为50 µg,内部产生的50 µg)对照小鼠进行对照小鼠的治疗,而对照小鼠用同种型对照(RAT IgG2B抗键孔limemocet Haemocyanin,clone ltf-2)进行处理,从肿瘤雕刻和每3天进行了每3天,以避免使用MISMISPID MISMISPID MISMISPID MISMISPID MISMIST MISSISPIE,在第10天,收集肿瘤并加工了基于体外测定的LY6A表达的H2-KB或FACS进行流式细胞仪染色。
对于涉及TME表征的SCRNA-SEQ实验,在注射后的第10天(ACT后72小时)分离肿瘤,并如上所述进行处理。通过FACS分离CD45+活级分,并收集了大约1×105个细胞。对于OT-1 T细胞的SCRNA-SEQ,在I.T. 5天后分离肿瘤。注射4×106 T细胞。CD45+CD3+CD8+标记物从肿瘤中分离出活的T细胞。按照制造商的说明,使用Nucleocounter NC250(Chemometec)测量解离的细胞浓度。对于来自实验3和4的SCRNA-SEQ样品(见下文),根据制造商的协议,使用了铬的下一个宝石单细胞固定RNA样品制备试剂盒。简而言之,根据10倍基因组固定细胞和核的基因组固定,使用铬固定RNA分析(CG000478),使用铬固定的细胞和细胞核固定1×106个细胞,将1×106的细胞固定在–80°C下,将其固定在–80°C下,使用铬铬固定的RNA固定下一个GEM单细胞单细胞固定RNA样品样品套件(PN-1000414,10x Genomics)。每个样品使用铬固定RNA试剂盒,小鼠转录组,4RXN×4BC(PN-1000496,10X Genomics)使用铬固定RNA试剂盒进行探针杂交,并在汇总洗涤工作流程后汇总并洗涤,如铬固定RNA固定RNA分析试剂盒协议中所述(CG000527,10x基因组),并进行了洗涤。对于所有其他SCRNA-SEQ样品,根据制造商的说明,使用了带有双指数的下一个带有双指数的GEM单细胞3'试剂盒。在铬X(10倍基因组学)上产生了宝石,其目标是10,000个细胞,并根据制造商的说明(CG000527,10X基因组学)制备了库。测序是在Novaseq S4 Lane PE150(Illumina)上进行的,每个细胞的目标为15,000个。
在四个不同的10倍基因组测序实验中收集CD45+免疫细胞。实验1,使用CellRanger Count(V.6.1.1)(Yumm3.3样品:NTT/108155和RTT/108157)预处理铬单细胞3'SCRNA-SECE样品。实验2,3'细胞包装多重实验与使用CellRanger Multi(v.6.1.1)预处理的4个样品(Yumm1.7OVA样品:NTT+ACT,RTT+ACT,RTT PTGS1/2 KO+ACT,RTT CTRL ROSA26+ACT)。实验3和4,使用Cellranger Multi(V.7.1.0)和内置探针集(V.1.0.1.1 MM10-2020-A)预处理的4个样本,每个样品进行了4个样品。实验3,Yumm1.7OVA样品:RTT MCHERRY CTRL,RTT IRF3/7,RTT COX2I和RTT COX2I+5-AZA,所有这些都接受了处理。实验4,Yumm1.7OVA包含实验2个样品和未经处理的Yumm1.7OVA样品(NOA)的生物学重复(NOA):NTTNOA/271221,RTTNOA/271222,NTT/271223 ACT,RTT/271224 ACT。使用了预先建立的10倍基因组学MM10参考Refdata-Gex-MM10-2020-A。用Seurat(V.4.3.0)在R(V.4.2.2)中进行进一步处理。为了生成CD45+免疫参考图,我们从前三个实验中整合了细胞,如下所示。使用了CellRanger滤波的特征 - Barcode矩阵,保留了1,000多个检测到的基因和小于15%的线粒体和少于40%的核糖体RNA读取的细胞。从三个实验批次中产生了一个集成的特征 - barcode矩阵,该基质是通过在每个实验中至少在五个细胞中发现的基因来包含基于探针的测定的,并排除了核糖体和线粒体基因。数据是对数均衡,缩放(回归G2M和S相位签名分数之间的差异)的缩放的),使用前3,000个最可变性基因上的主成分分析进行了降低性降低,并使用Harmonony71(V.0.1.1)进行了跨批处理的批处理校正。。40个和谐嵌入用于UMAP可视化。前40个和谐尺寸用于识别分辨率为0.5的免疫细胞亚clus子,并使用已知标记和公开可用的骨髓参考数据集21,72进一步分配给细胞类型。使用AddModulesCore函数对已发布的特征的表达进行评分73。在PRESTO(V.1.0.0)中实施的Wilcoxon Rank-sum测试用于识别差异表达的基因(DEGS)。Seurat的基于参考的映射用于预测生物学重复实验的细胞类型身份和地图细胞,使用FindTransfanceer和MapQuery函数进行注释的参考设置,并在质量控制过程中保留了1,000至4,500个细胞在27,1222和27,1224细胞之间,以及1,1224细胞,以及1,1224个细胞,以及1,1222的27,3000和8,000,000,300和8,000,000,300和8,000,000,300和8,000,000,300和8,000 centes。细胞分别将计数表限制为参考的基因宇宙。使用CellRanger Aggr生成了该实验的伪库克和GSEA功能分析的深度归一化计数。通过热图可视化,在无监督的聚类分析中探索了复制实验(实验4)的ACT和未经处理条件(无ACT)(无ACT)的差异。在进一步处理之前,将成纤维细胞簇删除。深度归一化的UMI计数上的总和聚集在方差稳定转化,选择300个可变基因的选择,标准化,K-均值聚类(k = 3)和使用富集对Reactome_2022的富集分析。相对频率条形图描述了在不同实验条件下细胞类型的相对丰度的变化。对于每个条件, 我们通过将细胞类型的绝对数量与相同条件下所有细胞的绝对数进行比较,计算了特定细胞类型的归一化丰度。这种归一化解释了条件之间捕获的细胞总数的差异。然后,我们在实验的所有条件下计算了细胞类型的相对细胞丰度。这是通过将细胞类型的归一化丰度与实验条件的同一细胞类型的归一化丰度的总和进行比较来完成的。对于每种单元类型的每个条件,此步骤都会产生每个条件的0到1之间的值,在实验的所有条件上,这些值的总和等于每种单元类型1。
在铬Flex实验中测定了分离的NTT和RTT T细胞的单细胞基因表达,并使用probeSet(V.1.0.1.1 MM10-2020-A)使用CellRanger Multi(V.7.1.0)进行读取处理。使用了细胞环滤光的特征 - barcode矩阵,并进一步过滤以保留800多个检测到的基因,少于10%的线粒体和少于10%的核糖体RNA读取的细胞,并使用Singler和ImmaC Commutions(fibrobllasts,Momac Maspustans,Momac Cersuments)鉴定出污染物簇的细胞。数据是对数符合标准和缩放的,并使用前2,000个可变基因上的主成分分析进行了降低。和谐用于从不同样品的细胞整合,并将15个和谐嵌入用于UMAP可视化。已发布的肿瘤单细胞数据用于签名评分29。补充表2中提供了基因列表。
为了了解TME中髓样细胞的分化轨迹,我们进行了MOMAC室的RNA速度分析74。使用Velocyto run命令从包装赛(0.17,17)的velocyto Run命令为每个样本创建了包含剪接注释的织机文件,默认参数且没有掩盖的间隔。将织机文件与已过滤的SCRNA-SEQ对象结合在一起,以保留单核细胞和巨噬细胞种群的数据(Monocyte_1,Monocyte_2,Infr_Mono,TAM_CCL6,TAM_CCL6,TAM_CTSK,TAM_CCTSK,TAM_C1Q,TAM_C1Q,TAM_H2-AB1,TAM_H2-AB1,TAM_SPP1,TAM_SPP1和TAM_CYC1和TAM_CYCCYCLING),以及ntam_cycly)。PTGS1/2 KO)。使用SCVELO(0.2.5)pp.Moments(n_pcs = 30,n_neighbors = 30)计算一阶和二阶矩,并使用默认参数运行动态模型。使用Python(V.3.8.12)。
使用SESIC75计算每个条件下每个细胞种群的基因调节网络。所使用的主题数据库是MM9-TSS中心-10KB-7Species.mc9nr.feather。使用Genie3计算共表达网络。基因调节网络是使用风景秀丽的包装器功能构建的。
对于先前发表的23个数据集的黑色素瘤和肺样本(基因表达综合(GEO)标识符GSE154763),如出版物中所述对原始计数进行了预处理,并且使用0.8分辨率计算了群集。单核细胞和炎症单核细胞基因集是通过使用PRESTO的Wilcoxauc()函数来得出的,并通过选择对数折叠变化> 0.6的基因(补充表2)。然后,将基因符号转换为人类符号。人类炎症单核细胞基因集用于计算每个集群的富集评分。简而言之,根据归一化数据计算了肺和MEL数据集中每个簇的基因平均表达。然后,使用具有以下参数的GSVA计算富集评分:minsize = 5,maxsize = 500,kcdf =“ Gaussian”。使用函数AddModulesCore()完成了UMAP嵌入式上签名的投影,然后使用Min.Cutoff = 0.3的炎症单核细胞得分和最小的Cutoff = 0.3绘制结果得分。对于另一个数据集43,获得了与原始图4a相对应的髓样群体的注释的Seurat-Object,如上所述分析了基因集。为了查询已发表的炎症基因特征,通过在CDC2 Cluster37中获得顶级DEG生成了先前发表的ISG+ DC Signature37。Bosteels INF-CDC2 DC签名先前是生成37的,是通过重新分析SCRNA-SEQ数据集(GEO识别符GSM4505993)获得的,在该数据集中,在所识别的炎症CDC2群集中获取前20摄氏度。随后使用AddModulesCore73在我们的数据集中对它们进行了评分,并使用配件()绘制了所得分数。补充表2中提供了基因列表。
使用COSMX技术(NanoString)进行了单细胞空间转录组学分析。从诊断年龄的患者中获得活检样本,中位数为66岁,范围为24至85岁。女性为34%,男性为66%。我们从34个黑色素瘤转移的组织微阵列核心获得了74个FOV(500×500 µm)的细胞分段数据,总共由980个基因×171,536个细胞组成。肿瘤样品是从21个淋巴结,7个皮下转移,1个肺转移和1个脑转移的21个淋巴结,未注释的1个未注释的1例,来自31例,其中31例含有72个FOV。两个FOV来自扁桃体作为对照。大多数肿瘤组织来自手术时接受治疗的患者。组织收集获得了隆德大学地区伦理委员会的批准(数字191/2007和101/2013)。患者提供了知情同意。大多数组织微阵列核心含有三级淋巴样结构,而FOV优先针对这些区域。低品质的FOV,具有 <20 counts and potential multiplets of cells (area exceeding the sample geometric mean + 5 standard deviation) were discarded. Using Seurat, genes for which the mean expression was below 3× the median of the negative probe mean expression, and genes with the highest 99% quantile expression, MALAT1 and IGKC (due to potential spillover to neighbouring cells), were removed, which retained 641 genes. The data were normalized using SCTransform76, counts that were zero before SCTransform were restored, and counts were log-transformed as log2(counts+1). The top 30 principal components were used for UMAP reduction and clustering (k.param = 15, resolution = 0.5, Louvain algorithm). Resulting clusters were assigned to biological annotations using known marker genes, and annotations were mapped back to FOV coordinates. expression of C1QC, CXCL9 or CXCL10 >0被认为是积极的。为每个FOV得出了细胞类型的分数。确定并显示跨FOV的细胞类型分数之间的Pearson相关值。在图2i中,CXCL9+ CXCL10+巨噬细胞/DC(编号9和10号)是CXCL9+或CXCL10+。CXCL9,CXCL10和C1QC巨噬细胞/DC(第5号)为阴性。
对于TME-COX签名,在Seurat中使用了Findmarkers函数,tresh.use = 0.25和min.pct = 0.1,以比较RTT CTRL(ROSA26)和RTT PTGS1/2 KO SCRNA-SCRNA-SECEQ样品。顶部DEG(log2倍更改≤1.5,调整后的P值< 0.05) were used and converted to human orthologues using DIOPT77. For the TME-IRF3/7 signature, the FindMarkers function was used in Seurat, comparing RTT CTRL (mCherry) and RTT IRF3/7 and taking the top 40 DEGs.
Gene expression data for patients receiving ICB were obtained from a previous study49 (NCBI BioProject accession number PRJEB23709). The TME-COX, TME-IRF3/7 and CD8+ T cell scores for each tumour sample were defined as the geometric mean of the expression values of each of the gene sets, respectively (Supplementary Table 4). The univariate Cox proportional hazards models, in which the TME-COX and TME-IRF3/7 scores were included as continuous variables, were used for testing the statistical association between gene signature expression and patient survival, separately for both signatures. The tumour samples were then divided into three groups on the basis of the signature score (bottom third, mid-third and top third) and Kaplan–Meier plots were generated for visualization. The association between signature expression and CD8+ T cell abundance was evaluated by calculating the Person’s correlation coefficient between the signature score and a CD8+ score for each signature separately. For this, all scores were normalized to a median of zero and standard deviation of one. The two overlapping genes were removed from the CD8+ signature before comparing it to TME-IRF3/7 signature expression. For evaluating the enrichment of TME-COX and TME-IRF37 gene signatures in responder and non-responder patients to TIL therapy (baseline) from a previous study43, mouse gene identifiers were first converted to human orthologues (with DIOPT v.9; best dcore = yes, best score reverse = yes, DIOPT score >7)使用AddModulesCore_ucell78计算“人性化”基因集的单细胞水平份量富集评分。
对于图3a中所示的图,调整后的P值的截止< 0.05 and log2 fold change >2和 < –2 was used on DEGs expressed in YUMM1.7OVA NTT and RTT GFP+ cancer cells FACS-sorted out of tumours (Supplementary Table 3). Pathway enrichment analysis was performed using Enrichr79,80. For the plot in Extended Data Fig. 5i, upstream regulator analysis (Ingenuity)81 was used to identify upstream regulators using DEGs with an adjusted P value < 0.05.
For in vitro analysis of PGE2 production, 2 × 106 cells were seeded in 10 ml medium, and supernatants were collected after 48 h and kept at −70 °C until analysis. For IFNβ, 0.3 × 106 cells were seeded, and 1 ml of supernatant was collected from confluent cells in a 6-well plate after 48 h of culture and kept at –70 °C until analysis. For analysis of PGE2 and IFNβ from mouse tumours, whole tumours were isolated between days 4 and 10 after engraftment, accurately weighed and immediately snap-frozen in liquid nitrogen. They were stored at −70 °C until further processing. For PGE2 analysis, tumours were subsequently digested using a MACS dissociator according to the manufacturer’s protocol in PBS supplemented with 1 mM EDTA and 10 µM indomethacin. Lysate was further diluted in dissociation buffer depending on the tumour condition and weight (100 µl per mg of tumour) and further quantified using a PGE2 ELISA kit (Cayman) or a mouse IFNβ Quantikine ELISA kit (Biotechne) according to the manufacturer’s protocol. Values were normalized by taking into account dilution factors and tumour weight. For human IFNβ analysis from human cells, 1 × 106 A375, M249, LOX or NCI-H358 cells were injected into NSG mice and collected on day 21. Tumours were processed as described above and quantified using a Human IFNβ Quantikine ELISA kit (Biotechne) according to the manufacturer’s protocol.
YUMM1.7OVA NTT and RTT tumours were isolated at day 10 after injection and weighed, and a solution of isopropanol and methanol (1:1, v/v) was added to the tissue for metabolite extraction. The material was subsequently homogenized and incubated for 1 h at −20 °C. The samples were then centrifuged at 14,000g for 3 min. A second extraction round was performed by adding 80% methanol and H2O (v/v) to the pellet and centrifuged, and both supernatants were combined. Finally, the samples were incubated for another 2 h at −20 °C, and after final centrifugation, the supernatants were stored at −70 °C until further analysis. Samples were subsequently measured on a ZIC-pHILIC column or a RP column. metabolites were annotated using the compound discoverer 3.0 software (Thermo Fisher) using an internal database or the mzCloud database (at least 75% match on the basis of measured molecular weight and MS2 spectra). For filtering, a RSD of corrected quality control areas was used, being less than or equal to 25%. Group CV of at least 1 group is less than or equal to 40%.
Cells were lysed with RIPA buffer (Cell Signaling Technology) supplemented with complete Protease Inhibitor Cocktail (Sigma Aldrich) and HALT phosphatase inhibitor (Thermo Fisher Scientific). Lysates were sonicated and cleared by centrifugation at 14,000g for 10 min at 4 °C. Protein concentrations were quantified according to the manufacturer’s instructions using a BCA Protein Assay kit (Pierce, Thermo Fisher Scientific). Immunoblotting was conducted according to standard protocols. The primary antibodies used for immunoblotting were as follows: anti-vinculin (Sigma-Aldrich, 1:1,000), anti-COX2 (CST,1:1,000) and anti-H3 (acetyl K27) (Abcam, 1:5,000). The secondary antibodies used were as follows: anti-rabbit IgG HRP-linked (Cell Signaling Technology, 1:10,000) and anti-mouse IgG HRP-linked (Cell Signaling Technology, 1:10,000).
Volumetric microscopy of mouse tumours was performed as previously described9. In brief, tumours were fixed in Antigenfix solution (Diapath) for 6–8 h, dehydrated in 30% sucrose overnight, embedded in TissueTek OCT freezing medium (Sakura Finetek) and stored at −80 °C. Using a Leica CM3050 S cryostat, consecutive sections of 50 µm thickness were generated, subsequently permeabilized, blocked and stained in 0.1 M Tris (Carl Roth) supplemented with 1% BSA, 0.3% Triton X-100 (Merck), normal mouse serum (Merck) and donkey serum (Merck). Stained sections were mounted in Mowiol (Merck) and imaged on an inverted TCS SP8 confocal microscope (Leica) using a HC PL APO CS2 ×20/0.75 NA objective. Images were acquired as tiled image stacks, covering whole tumour sections in the xy plane, with 2 µm z-spacing to provide 3D image volumes of at least 20 µm depth. For further analyses, images were adaptively deconvoluted using the Leica TCS SP8 LIGHTNING tool (v.3.5.7.23225) and analysed using Imaris 9.9 software (Oxford Instruments). The Imaris surface generation tool was used to reconstruct and visualize 3D objects for individual cells. Where indicated, signals outside rendered cells were masked to visualize intracellular proteins. For analysis of immune cell infiltration by histocytometry, statistics for object localizations were exported into Excel (v.16.88; Microsoft) and analysed using GraphPad Prism software (GraphPad). Quantification of the number of cells was performed relative to the volume of the imaged section. Interacting cells were described as being less than <5 µm apart from each other.
The following antibodies were used for staining of mouse tissues: anti-CD3 (BioLegend, clone 17A2), anti-CD103 (R&D Systems, goat polyclonal), anti-FSCN1 (Santa Cruz Biotechnology, clone 55-k2), anti-Ly6C (BioLegend, clone HK1.4) and anti-MHCII I-A/I-E (BioLegend, clone M5/114.15.2). All antibodies were either validated by the manufacturer or were previously reported for IF microscopy. The populations were defined as follows: T cells (CD3+), monocytes (Ly6C+CD103–MHCII+), cDC1s (FSCN1–CD103+MHCII+), CCR7+ cDC1 (FSCN1+CD103+MHCII+) and CCR7+ cDC2 (FSCN1+CD103–MHCII+). Nur77–GFP was directly assessed by transferring Nur77–GFP reporter OT-1 T cells.
The meta-analysis was performed in accordance with the updated Preferred Reporting Items for Systematic Reviews and meta-analyses (PRISMA) reporting guidelines82. The literature search was conducted using the PubMed (MEDLINE) database and last updated on 31 December 2023. The full search strategy is available in Supplementary Table 6. The literature review included studies of (1) adult patients with (2) melanoma or NSCLC (3) undergoing FDA-approved immunotherapy, including anti-PD1, anti-PD-L1 or anti-CTLA4, (4) co-medication with NSAIDs and (5) available sufficient patients’ outcome data to calculate odds ratios for overall response rates or hazard ratios for progression-free and overall survival. Patients were not excluded when receiving concomitant chemotherapy and/or radiotherapy. Included studies report time of overall survival, time of progressions-free survival and overall response rates (defined as complete responses and partial responses divided by patient population). All studies published since 1 January 2011 (FDA approval of first immunotherapy, for example, ipilimumab) were included. Survival data are reported as univariate or multivariate hazard ratios; if both were available, multivariate analysis was prioritized. Odds ratios and hazard ratios with 95% CIs for overall response rates, progression-free and overall survival from included studies were utilized to calculate the pooled odds and hazard ratios. The heterogeneity of the pooled results was evaluated using Q-tests to assess between-study heterogeneity and quantified by the Higgins I2 test. If P was <0.10 for the Q-test or I2 was >假定50%,假定显着的异质性,并使用随机效应模型来汇总数据。使用M meta(荟萃分析的常规软件包,v.7.0-0)进行统计分析(V.4.3.2)。
使用GraphPad Prism(V.9.1.2或更新)和Microsoft Excel(V.16.88)进行统计分析。使用D'Agostino和Pearson测试或Shapiro -Wilk测试计算数据分布的正态性。每个实验使用的样品(N)数量和所使用的统计测试的数量在图传说中指出。除了以下仅执行一次的实验外,所有体外和体内实验均至少重复两次,并且总是具有多个重复:SCRNA-SEQ涉及YUMM1.7 RTT模型的药理治疗,肿瘤内注射的T细胞和Yumm3.3模型。如果显示出代表性图像的染色至少重复两次,则除了BATF3 - / - 和NUR77记者实验中的NTT外,该实验曾进行过一次但n = 3肿瘤,并且还通过流式细胞仪进行了证实。KPAR模型的药理组合处理一次。没有使用统计方法来确定体内实验的样本量,并根据先前的初步实验选择数字。科学家并未对实验组视而不见,并且不同研究者重复了实验。根据治疗当天的肿瘤大小,将小鼠随机分配给治疗组,或者在必须在第3天开始治疗时从单独的笼子中随机分配。p值<0.05被认为是显着的。
有关研究设计的更多信息可在与本文有关的自然投资组合报告摘要中获得。