2025-06-22 22:05来源:本站
在补充表1中提供了本研究中使用的细菌菌株。质粒和寡核苷酸的列表分别出现在补充表2和3中。补充表4中列出了抗体和工程细菌素。
为了构建PNGH206质粒,使用位置定向的诱变来引入溶剂可访问的半胱氨酸(K469C),该构建体的细胞毒性结构域已被删除,其中已删除了n-t末端62氨基酸的62氨基酸(Δ2-61Cole9)。
使用来自大肠杆菌BW25113的染色体DNA作为模板和寡核苷酸DACA_F和DACA_R(补充表3),使用来自Q5聚合酶(NEB)的DACA基因通过Q5聚合酶(NEB)扩增。使用寡核苷酸PBAD33_FR和PBAD33_RF通过PCR用Q5聚合酶通过PCR扩增质粒PBAD33(补充表3)。插入物和矢量与无连接的克隆54连接。在LB琼脂 +25μgml -1氯霉素上选择阳性克隆,并使用gotaq G2聚合酶(Promega)通过菌落PCR鉴定。克隆的DACA基因的正确序列通过使用特定的寡核苷酸PBAD33_SEQ_F1,DACA_SEQ_R1,DACA_SEQ_F2和PBAD333333_SEQ_R2(补充表3)证实了双链测序。所有寡核苷酸均从Eurogentec获得。
Antibodies and engineered colicins used are listed in Supplementary Table 4. Anti-BamA MAB2 Fabs: a construct suitable for periplasmic expression of Fab in E. coli and containing a sequence coding for Fab fragments of MAB2 was cloned, transformed into 34B8 E. coli cells and expressed at 30 °C under control of the phoA promoter in CRAP phosphate-limiting autoinduction medium (PMID:12009210)添加了甲求甲霉素(50μgml -1)。24小时后,收集细胞并将每50 ml裂解缓冲液,溶菌酶(0.125 mg mL-1)和苯甲酶(0.01 mg mL-1)的裂解缓冲液,溶菌酶(0.125 mg mL-1)(0.125 mg mL-1)(0.125 mg ml-1)重悬于PBS中。将制备的悬浮液以15,000 psi的含量进行微氟化,并在4°C下以50,000g澄清30分钟。然后将上清液在用PBS平衡的蛋白质G Sepharose珠上解析,使用每克细胞糊使用2 mL填充的树脂体积。用PBS广泛洗涤该色谱柱,并在轻度酸性条件下洗脱Fabs(0.56%冰川乙酸pH 3.6)。将洗脱的晶圆厂立即在4°C下透析过夜,其中含有500 mM NaCl,10%甘油和100 mM Tris(pH 8.0)。在S75 16/60凝胶过滤柱(GE Healthcare)中,使用PBS(pH 7.2)作为运行缓冲液进一步纯化了Fabs。按照制造商的说明,使用Alexa Fluor 488蛋白标签试剂盒(Thermofisher Scientific)标记MAB2 Fab片段。荧光标记的晶圆厂通过HIPREP脱盐柱(GE Healthcare)去除多余的染料。收集峰分数并浓缩,并使用液相色谱质谱法(LC – MS)确定标记度为1.42染料分子。Colicin E9 – AF488表达和纯化:先前描述了该蛋白的表达和纯化8。在这里,我们使用了带有单半胱氨酸的改良构建体(δ2-61Cole9 k469c-im9his6)。如前所述8,这些Cole9构建体的C末端DNase结构域中的Cys469标记为三倍过量的Alexa Fluor 488-maleimide(Invitrogen)。估计分光光度法(V550分光光度计,JASCO)的标记效率(通常为每种蛋白质的0.8个荧光团)。Colicin B – GFP或结菌素B -MCHERRY表达和纯化:这些蛋白质的表达和纯化先前已被描述为27。Pyocin S5 – AF488表达和纯化:以前已经描述了该蛋白的表达和纯化55。Pyocin S2 -MCHERRY表达和纯化:以前已经描述了该蛋白的表达和纯化56。在这里,我们以类似的方式融合了麦克里。用于表达该构建体的引物和质粒在补充表2和3中出现。ClODF13– AF488表达和纯化:Cloacin df13的DNA编码cloacin df13的DNA在其C末端与Cyssteine的Cloacin df13的受体结合结构域与C-Terminus的C-Terminal c-terminal c-terminal to c-terminal to c-terminal to c-terminal c-termin c-e9 Imnunity E9 Inmunity e9 Inmunity to to to colunity e9免疫蛋白(QQ)(QQ)(QQ),QQE9 QUIS9,IM9,IM9,IM9,IM9PNGH382。用PNGH382转化的BL21(DE3)细胞在37°C下生长至600 nm(OD600)的光密度为0.8,HIS6 – IM9 – Clodf13301–460Cys在其上通过添加1 mM IPTG诱导。在通过离心收集之前,将细胞在37°C下再生长2小时。将细胞重悬于20 mM Tris-HCl,pH 7.5、8 mM咪唑,0.5 m NaCl,1 mM PMSF中,然后通过超声处理裂解。通过在4°C下以17,500克离心30分钟来阐明细胞裂解液,然后将上清液通过0.45 µM滤波器并加载到5 ml Histrap HP柱(Cytiva)上。用4至500 mm咪唑梯度从色谱柱洗脱结合的材料。如前所述8,含有His6-IM9-Clodf13301–460Cys的分数标记为1.5倍AF488-Maleimide(Invitrogen)8。标记效率的分光光度法估计为98% (Biospectrometer,Eppendorf)。
在成熟蛋白突变为丝氨酸的成熟蛋白开始时,将BAMB和BAME的构建体与半胱氨酸合成,以去除其N末端酰基化位点并克隆到PET22B(+)(Genscript,Novagen)。合成的BAMC构造缺乏其周质出口序列和N末端酰化位点(残基26-344),并与N端6xHis-Tag(Genscript,Novagen)57合并到PET16B表达载体中57。BAMA P1,2(残基21-174)的结构被克隆到PQE70中,C末端为4×His-Tag58。BAMA P3,4(残基175-345)和Bama P4,5(残基266-422)的结构被合成并克隆到PET26B(+)中,并带有C端6×His-Tag(Genscript,Novagen)。
将含有合适质粒的细胞生长在BAMB,BAMB,BAME,BAME和BAMA P1,2的100 µg ML -1氨基霉素的LB培养基中,以及30 µg ML -1 Kanamycin p3,4和P4,5,p4,5和p4,5,由OD600的0.4和蛋白质表达添加到1 mm iptg,ard and 18°c的OD600和蛋白质表达。通过离心(6,000克,15分钟)收集培养物,并将磷酸钠pH 7.5,300 mM NaCl,10 mM咪唑使用无EDTA的无EDTA蛋白酶抑制剂片剂(ROCHE)(ROCHE),并使用乳液FLEX C3细胞抑制剂(Avestin)裂解。将裂解液以75,000克离心45分钟,在4°C下以颗粒不溶性材料。通过0.45 µm过滤器(Millipore)过滤上清液,然后在磷酸钠缓冲液中使用5 ml Histrap HP柱(GE Healthcare)通过固定的金属亲和色谱纯化,然后使用50 mm磷酸盐pH 7.5,300 mm nac Lege exexexexexexexexexexexexexexexexexexexexexexexexExexexexexexexexexexexexexexexexexexexexexexexexexexexexexexexexexexexexexexexexexexexexex。使用Amicon Ultra Ultra 10 kDa MWCO离心浓缩剂(Millipore)通过SDS -PAGE评估馏分,并将其浓缩,并在4°C下存储供立即使用或冷冻在液氮中并存储在-80°C下。
表达BAMCD(PSK46)40和带有C末端6×His-Tag(Pbame-His)40的BAME的质粒分别转化为BL21(DE3)细胞(新英格兰Biolabs)。在LB肉汤中生长细胞(在BAMCD中添加了50 µg ML -1链霉素,在37°C下为BAMCD补充了100 µg ml -1氨苄青霉素),在0.4的OD600下,在18°C下添加0.5 mM Iptg,在18°C中添加0.5 mM IPTG。通过离心(6,000g,15分钟)分别收集细胞,并使用乳液反射C3 Cell Dispriptor(Avestin)重悬于20 mM Tris pH 8.0、150 mM NaCl中,并分别裂解。裂解物在4°C下以10,000克分别旋转30分钟,上清液以100,000克离心45分钟以收集膜。用50 mM Tris pH 8.0、150 mM NaCl和1%N-多二烷基-β-麦尔替剂(DDM)(Anatrace)(Anatrace)(Anatrace)溶解膜(每40 mg膜的1 mL缓冲液)(每40毫克的膜)溶解化,然后在4°C下旋转2 h。将溶解的膜以50,000克离心30分钟;将上清液通过0.45 µm滤波器(Millipore)过滤,然后在4°C下结合到平衡的Ni-NTA琼脂糖珠(Qiagen)过夜。将珠子用3柱体积为50 mm Tris pH 8.0、150 mm NaCl,50 mM咪唑,0.03%DDM洗涤,并用2列的2列体积为50 mm Tris pH 8.0,150 mm NaCl,500 mm Imidazole,0.03%DDM。通过SDS-PAGE评估分数,并使用SuperDex 200 16/600柱(GE Healthcare)在50 mM Tris pH 8.0,150 mm NaCl和0.03%DDM中使用SuperDex 200 16/600柱(GE Healthcare)进行汇总,并通过尺寸排斥色谱进一步纯化。通过SDS -PAGE进一步评估馏分,在4°C下合并并存储,以立即使用或冷冻液氮,并存储在-80°C下。
BAMCD是从质粒PSK46的修饰版本中共纯化的,该质粒PSK46在BAMC的C末端携带6×His-Tag按照相同的协议,用质粒pbame-His省略了步骤。
该协议改编自先前的报告41,42。质粒PJH11441转化为大肠杆菌BL21(DE3)。将细胞在含有100 µg ML -1氨苄青霉素的Lb(10 g L -1 NaCl)中生长至0.5-0.6的OD600,并通过在37°C下孵育90分钟,用轨道摇动(175 rpm),用0.4 mM IPTG诱导表达。收集细胞(6,200G,4°C,15分钟),重悬于缓冲液A(20 mM Tris/HCl,pH 8.0)中,并因超声处理而破坏。通过超速离心(130,000g,4°C,1 h)收集膜,并在含有50 mm Tris/HCl,150 mM NaCl,1%DDM(Avanti)的pH 8.0时溶解在含有50 mM Tris/HCl的缓冲液B中,通过在冰上孵育1 h,在pH 8.0处溶解。将样品与Ni-NTA琼脂糖珠(Qiagen)的每L培养体积2 mL孵育,并在4°C下在管辊上旋转过夜。在缓冲液C(50 mM Tris/HCl,150 mM NaCl,50 mM咪唑,0.05%DDM,pH 8.0)中洗涤珠,并在缓冲液D(50 mM Tris/Hcl,150 mm NaCl,NaCl,500 mM Imidazole,0.05%DDM,pH 8.0)中洗脱。在超滤单元中,洗脱的馏分浓缩至〜500 µl,并应用于超级插件200(10/300)柱(GE Healthcare),在0.5 ml -1,complated 500 ml -1,收集50000 µll fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr,通过SDS -PAGE分析蛋白质纯度和产率。将含有BAMABCDE的馏分合并,并立即重构为蛋白脂质体或液氮中的Snap-Frozen,并在-80°C的小等分试样中储存。
该协议改编自先前的报告40,41。苏拉在大肠杆菌BL21(DE3)中被过量生产,其中含有50 µg ml -1 kanamycin的Lb(10 g L -1 NaCl),直至〜1.0的OD600。将温度转移至16°C,并加入0.1 mm(终浓度)IPTG,并在16°C下孵育约16-18小时。收集细胞(6,200G,4°C,15分钟),重悬于缓冲液A(20 mM Tris/HCl,pH 8.0)中,并因超声处理而破坏。将可溶性馏分与每L培养体积的Ni-NTA琼脂糖珠(Qiagen)孵育2 ml,并在4°C下在管辊上旋转过夜。在缓冲液B(20 mM Tris/HCl,50 mM咪唑,pH 8.0)中洗涤珠,并在缓冲液C(20 mM Tris/HCl,500 mM Imidazole,pH 8.0)中洗脱蛋白质。将洗脱的级分在4°C下透析透析(20 mM Tris/HCl,10%甘油)过夜,然后浓缩至〜5 mL,并在1 ml min -1 ml min -1的过滤和脱胶缓冲液中涂在超级dex 75(16/600)柱(GE Healthcare)中。通过SDS -PAGE分析洗脱的馏分,以评估蛋白质的纯度和产量。在10 kDa离心浓缩剂(Sartorius)的Vivaspin Turbo中将含有Sura的分数组合在一起,并浓缩至250-300 µm,并在-80°C的等分试样中储存。
使用了适应的协议42。OMPT被过量生产,作为大肠杆菌BL21(DE3)中的细胞质包含体,该细胞包含在Lb(10 g L-1 NaCl)中,其中含有50 µg ml-1 kanamycin,最多可达OD600〜0.5-0.6,在37°C下加入1 mmMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMYCIN。收集细胞(6,200G,4°C,15分钟),重悬于缓冲液A(50 mM Tris/HCl,5 mM EDTA,pH 8.0)中,并通过超声处理而破坏。通过离心(4,500G,4°C,15分钟)收集不溶性分数,并重悬于缓冲液B(50 mm Tris/HCl,2%Triton X-100,pH 8.0)中,然后在室温下均匀地在室温下孵育1 H。通过在室温下孵育1小时,在缓冲液C(50 mm Tris/Hcl,pH 8.0)中颗粒(4,500G,4°C,15分钟)进行颗粒(4°C,15分钟),然后在室温下孵育1小时,然后在缓冲液D中溶解(25 mm Tris/hcl,6 m Guanidine-Hcl,guanidine-HCl,pH 8.0)。过滤上清液,在10 kDa离心浓缩剂(Sartorius)中浓缩至〜5 ml,并在1 ml min -1时使用过滤后的和脱气的缓冲液D涂在超级dex 75(26/600)柱(GE Healthcare)上。通过SDS -PAGE分析洗脱的馏分,以评估蛋白质的纯度和产量。将含有OMPT的馏分组合在一起,并在-80°C下存储在等分试样中。
使用了适应的协议33。携带6×His-tag的可溶性MEPM在质粒PMN86的大肠杆菌BL21(DE3)的细胞质中产生过多。在37°C下含有100 µg ml -1氨苄青霉素的Lb(10 g L -1 NaCl)中生长细胞,摇动至OD600〜0.6。培养物转移到25°C,并在30分钟后添加50μMIPTG,以诱导蛋白质过量生产。诱导持续2小时。通过离心(6,200G,4°C,15分钟)收集细胞,并重悬于缓冲液A(25 mm Tris/HCl,300 mM NaCl,10 mM MGCL2,20 mM咪唑,10%甘油,10%甘油,pH 7.0)中。通过超声处理破坏细胞,并以1 ml min -1的速度应用于5 mL Histrap HP柱。用5柱体积的缓冲液A在1 ml min -1的量中洗涤该色谱柱。MEPM在缓冲液B(25 mM Tris/HCl,300 mM NaCl,10 mM MGCL2、400 mM咪唑,10%甘油,pH 7.0)中以1 ml min -1洗脱。Fractions containing MepM were pooled and dialysed overnight at 4 °C against buffer C (25 mM Tris/HCl, 300 mM NaCl, 10 mM MgCl2, 10% glycerol, pH 7.0), then concentrated to a volume of ~5 ml and applied to a Superdex 75 (16/600) column (GE Healthcare), in filtered and degassed buffer C at 1 ml min−1.通过SDS -PAGE分析洗脱的馏分,并将含有MEPM的馏分组合在一起并存储在-80°C下的等分试样中。
使用了适应的协议59。将细胞在37°C的4 l lb(10 g l -1 naCl)中生长,并在轨道摇动(175 rpm)中生长,最高为OD600〜0.5-0.6。将培养物在冰上孵育10分钟以阻止细胞生长。收集细胞(6,200G,4°C,15分钟),并重悬于40 mL冰冷的毫克水中。将细胞悬浮液在40毫升沸腾的8%SD中添加到40毫升中,并用剧烈搅拌煮沸30分钟。冷却至室温后,通过超速离心(130,000g,25°C,1小时)收集囊泡,并在milli-Q水中洗涤。重复进行超速离心和洗涤步骤,直到样品为无SDS59。将囊重悬于9 mL的10 mM Tris/HCl,10 mM NaCl,pH 7.0中,补充了1.5 mg的α-淀粉酶(Sigma-Aldrich),并在37°C下孵育2小时。将样品补充2 mg的固定酶E(Sigma-Aldrich),并在60°C下孵育1小时。通过添加4%SD(1:1 v/v)并在100°C沸腾15分钟,从而停止反应,然后将样品像以前一样洗涤直至无SDS。将纯化的囊液重悬于〜10 mg ml -1中,在0.02%NAN3中,并在4°C下储存。通过用穆拉米德酶大细胞的消化来定量PG制剂,然后通过硼氢化钠降低所得的杂肽,并使用205 nm的检测通过HPLC分离HPLC。如描述的59所述,将杂肽的总面积与从紫外吸光度估算的已知浓度的标准样品的总面积进行了比较。在比较下拉分析和BAM活性测定中的四肽和五肽的PG时,将所使用的不同PG制剂的量调节至从PG释放的杂肽的相同UV吸光度。
将大肠杆菌BW25113Δ6LDT30(〜5.6 mg ml-1)的分离囊与MEPM(3 µm)在25 mM Tris/HCl,150 mM NaCl,0.05%Triton X-100,pH 7.5中孵育。并联制备了未用于MST实验的含有囊的阴性对照样品(模拟摘要)。将样品在37°C的摇动下孵育约18小时,并在100°C下煮沸10分钟。通过离心(17,000克,室温,15分钟)收集释放的可溶性PG片段(Tetran),并针对50 mm磷酸钠,150 mm NaCl,pH 7.0透析在室温下约24小时,以3.5 kDa diasis膜中的3.5 kDa lomysis膜。透析的四角形存储在-20°C。
为了进行组成分析和定量,将纯化的PG囊或tetran(〜100 µg)用大提琴基(0.5μgml -1)在37°C下在20 mm磷酸钠的37°C下消化16-18 h,pH 4.8,摇动(1,000 rpm)。通过在100°C煮沸10分钟来停止消化。在离心(15,000g,15分钟)后收集杂肽,如所述59所述降低,并通过55°C下的相反相HPLC在90或180分钟的线性梯度下通过磷酸盐50 mm磷酸盐,pH 4.31至75 mm ph 4.31至75 mm ph 4.95%的phose phose phose phose phose phose phose phose,在55°C下进行分析,pH 4.31至75毫米。无限HPLC系统(安捷伦)。通过比较来自HPLC色谱图59的UV信号的总峰面积,可以估算来自不同囊体制剂的杂肽的相对浓度。
该协议改编自先前的报告31,32。将PG囊(〜1 mg)与Pg结合缓冲液(50 mM Tris/Maleate,50 mM NaCl,10 mM MGCL2,pH 7.5)中的纯化蛋白(5 µM)一起在总体积为100 µL中孵育。将样品在冰上孵育30分钟,然后通过离心(17,000g,室温,10分钟)固定,并收集上清液(上清液,S)。通过在200 µL的PG结合缓冲液中重悬于PG颗粒并再次进行颗粒(17,000g,室温,10分钟),并回收上清液(WASH分数,W)。通过将PG颗粒重悬于100 µL 2%SDS中,并在室温下搅拌1小时,从囊中释放了PG结合的蛋白。离心样品(17,000克,室温,10分钟),并收集上清液(颗粒分数,P)。通过SDS -PAGE分析了馏分S,W和P,对Coomassie Blue染色可视化的15%聚丙烯酰胺凝胶和蛋白质的蛋白质进行了分析。分数p中的蛋白质保留表明蛋白质与pg sacculi结合。对于使用全长bamabcde复合物进行的实验,补充了PG结合缓冲液,用0.05%的Triton X-100补充。使用Sura进行的PG下拉实验在20 mm Tris/HCl,pH 6.5中进行。
根据制造商的协议,将纯化的蛋白用红色NHS(纳米emper Technologies)标记为MST标记缓冲液(50 mM磷酸钠,150 mM NaCl,10%甘油,pH 7.0)。分光光度法测定荧光标记蛋白的浓度和标记的效率。MST实验如下:四链稀释液(从〜5.6 mg ml-1到〜0.2μgml-1,总共16个样品)或在MST缓冲液中以10μl的总体积制备了模拟消化,将其混合到MST Buffer补充剂中的100 nm中,在0.1%x 00中,将蛋白质等同于100 nm,s reditiged to to)x-1%x-crodig indit indit x-crodig indit x-00(s)。从〜2.8 mg ml -1到〜0.1μgml -1(〜90μm至〜3 nm)中获得配体的连续稀释度,估计tetran的平均分子量为30 kDa),最终蛋白质浓度为50 nm,上的浓度为50 nm,上流浓度为0.05%和20μl的反应量。将样品在冰上在冰上孵育5分钟,并在室温下5分钟孵育,并加载到标准涂层的MST毛细管中。测量是在NT.115(纳米机技术)中进行的。选择每组实验的LED功率,以便在毛细管扫描期间为每种蛋白质的每种蛋白质计数200至2,500个荧光值。在每个热合器的稳态区域分析了嗜热。KD测量的曲线拟合是通过根据1:1结合模型在每个样品的稳态下绘制稳态荧光强度(FNOR)(FNOR)的,作为三个独立实验的平均值。使用MO-亲和力分析软件(Nanotemper Technologies)分析结果。
另外,对于在施加温度梯度之前,对沿连续稀释的平均荧光占平均荧光的±10%的蛋白质大于平均荧光的±10%,通过直接绘制样品的初始荧光针对配体浓度绘制样品的初始荧光来进行曲线拟合。假设来自三个独立实验的平均值1:1结合模型,则计算KD。To confirm that initial fluorescence changes were ligand-dependent, SDS-denaturation tests were performed as follows: after preparing the serial dilution as for the main interaction experiments, the initial fluorescence of three capillary samples representative of the bound fraction (capillary 1, 2 and 3) and three capillary samples representative of the unbound fraction (capillary 14, 15 and 16) was first measured to determine the differences between bound and unbound国家。然后将样品以15,000克离心10分钟,然后将上清液与2×SD-MIX(40 mm DTT,4%SDS)混合1:1,并在95°C煮沸10分钟。然后再次测量所选样品的初始荧光,并将其与SDS延期测试之前观察到的初始荧光进行了比较。如果SDS处理消失了,则确认初始差异是指配体依赖性的。SDS-NED饱和测试(SDS检验)一式三份进行,并使用MO-亲和力分析软件(Nanotemper Technologies)进行分析。
该协议改编自先前的报告40,41,60。将大肠杆菌极性脂质(Avanti)重悬于20 mg ml -1的水中,通过超声分散良好,将200 µL与1 ml新鲜纯化的BAM复合物混合,并在冰上孵育5分钟。将混合物用20 mL的20 mM Tris/HCl,pH 8.0稀释,并在冰上孵育30分钟。通过超离心(135,000g,4°C,30分钟)将蛋白脂质体固定,并在20 mL的20 mm Tris/Hcl pH 8.0中洗涤,再次固定,并重悬于800μL的20 mm Tris/Hcl pH 8.0中。通过SDS -PAGE,分析上清液,洗涤和颗粒分数来评估重建的效率。该方法制备的蛋白脂质体包含几乎完全向外定向的BAM复合物(即,该络合物的周质部分暴露在脂质体表面60上)。等分试样(20μL)的蛋白质脂质体在液氮中被冻结,并储存在-80°C下。
将两个25 µL亚反应(A和B)组装在20 mM Tris-HCl中,pH 6.5如下:亚反应A含有Sura(140 µM)和OMPT(20 µm);亚反应B含有BAM蛋白脂质体(2 µM),荧光肽(肽合成)(2 mM)。将两个子反应组装成半区域,黑色微板(康宁),并在30°C下孵育5分钟,并混合以开始OMPT折叠(最终浓度:1 µM BAM BAM蛋白脂质体,1 mM荧光肽,70 µm sura,70 µm Sura和10 µm ompt in Close os prompt of 50 µl)。When required, PG sacculi or Tetran prepared in 20 mM Tris-HCl, pH 6.5 were supplemented to sub-reaction B. Fluorescence emission (excitation at 330 nm, emission at 430 nm) upon cleavage of the fluorogenic peptide by folded OmpT was monitored at 30 °C for 1 h 20 min after in a FLUOStar Microplate Reader (BMG Labtech), with readings every 20 s和5 s轨道在每次阅读之前发抖。为每个实验分析了三个独立的重复。在荧光释放曲线的线性范围内分析了每个重复的活性率,平均并转换为相对于包含无PG的控制反应的百分比。使用在线mycurvefit工具(https://mycurvefit.com/)估算了富四肽和富含五肽的PG的EC50值。
对于在荧光测量之前折叠OMPT的实验,如所述组装反应并在30°C下在轨道摇动下孵育2 h 30分钟,以允许BAM介导的OMPT组件。然后将样品与50 µL的反应混合,其中含有2 mM氟化肽或2 mM荧光肽和5 mg/ml囊泡的5 mg/ml囊,来自20 mM TRIS-HCl,pH 6.5,OMPT活性在20 mM Tris-HCl中,并进行了OMPT活性。
如下所示,进行了含有超过苏拉的实验。将Sura(15 µm)与1 mg大肠杆菌MC1061的1毫克囊液混合在20 mM Tris-HCl,pH 6.5中,总体积为200 µl。对照样品没有PG。将样品在冰上孵育30分钟,然后分成两半。按照所述组装(BAM活性控制反应不包含PG,不包括额外的Sura或PG),将一半添加到OMPT折叠反应中。如所述,另一半用于监测Sura的PG结合。如上所述测量了OMPT活性。
使用两尾学生的未配对t检验计算统计显着性。差异被认为对P具有统计学意义< 0.05. Statistical significance was indicated as follows: NS, P >0.05(不显着);*p< 0.05; **P ≤ 0.01; ***P ≤ 0.001. Exact P values are indicated in the figure legends.
E. coli cell suspensions were mixed 1:1 with 2× SDS–PAGE loading buffer (200 mM Tris-HCl, pH 6.8, 4% SDS, 0.2% bromophenol blue, 20% glycerol, 10% β-mercaptoethanol) and boiled at 100 °C for 10 min. Samples were loaded on 15% polyacrylamide gels and proteins resolved by SDS–PAGE, then transferred to nitrocellulose membranes and probed with specific primary antibodies (anti-BamA 1:40,000; anti-BamB 1:3,000; anti-BamC 1:20,000; anti-BamE 1:1,500; anti-Pal 1:2,500; anti-CpoB 1:2,500; anti-PBP5 1:1,000; anti-Lpp 1:3,000). Goat anti-rabbit HRP-IgG (Sigma–Aldrich, 1:5,000) was used as secondary antibody. Western Blots were developed using ECL Prime Western Blotting System (GE Healthcare).
The protocol was adapted from a previous report34. In brief, E. coli MC1061 was grown in 50 ml of LB (5 g l−1 NaCl) at 37 °C by orbital shaking up to OD600 ~0.5. Cells were pelleted (4,500g, room temperature, 10 min), the cell pellet washed with 50 ml of phosphate-buffered saline (PBS) three times and the OD600 adjusted to 2.0 with PBS. 3,3′-dithiobis (sulfosuccinimidyl propionate) (DTSSP, ThermoFisher) was freshly dissolved in 5 mM sodium citrate, pH 5.0 and added to cells to a final concentration of 0.5 mM. Cells were incubated at room temperature for 10 min. The cross-linking reaction was quenched by adding Tris/HCl, pH 8.0 to a final concentration of 50 mM, incubating at room temperature for 15 min. Whole cell samples were taken for Western Blot analysis by concentrating 300 µl of cells 3-fold and mixing 1:1 v/v with 2× SDS–PAGE buffer (200 mM Tris/HCl pH 6.8, 4% SDS, 20% glycerol, 0.2% bromophenol blue) with or without 10% β-mercaptoethanol. The rest of the bacterial suspension was added drop-wise to an equal volume of boiling 8% SDS and boiled with vigorous stirring for 30 min to isolate PG sacculi. After cooling down to room temperature, sacculi were pelleted by ultracentrifugation (130,000g, room temperature, 1 h) and washed twice in 2% SDS, then resuspended in ~100 μl of 2% SDS. To analyse PG-bound proteins, sacculi suspensions were boiled in SDS–PAGE buffer with or without 10% β-mercaptoethanol at 100 °C for 10 min, briefly centrifuged, and supernatants loaded on 15% polyacrylamide gels, together with whole cell samples taken after cross-linking. Proteins were transferred to nitrocellulose membranes for Western blot analysis.
E. coli strains were grown from a single colony in LB + 25 µg ml−1 chloramphenicol at 37 °C by orbital shaking for ~16–18 h. The OD600 was adjusted to 2.0 and cells were serially diluted to 10−7 in growth medium, then plated with a pin replicator on LB agar + 25 µg ml−1 chloramphenicol + 0.2% arabinose, with or without 2% SDS. Plates were incubated at 37 °C and photographed after 24 h of incubation.
Overnight LB (10 g l−1 tryptone, 10 g l−1 NaCl, 5 g l−1 yeast extract (pH 7.2)), supplemented M9-glucose medium (0.4% (w/v) -glucose, 2 mM MgSO4, 0.1 mM CaCl2, 1 mg ml−1 NH4Cl, 0.05% (w/v) casamino acids) cultures were grown at 37 °C and diluted 1:100 into fresh medium with appropriate antibiotics. Cultures were grown at 37 °C, unless stated otherwise, to mid-log phase (OD600 = 0.2–0.7) and cells were centrifuged at 7,000g for 1 min. For translation inhibition experiments, cells were treated with chloramphenicol (30 µg ml−1) 30 min before samples were taken. Agar pads were prepared by mixing supplemented M9-glucose medium or PBS with 1% agarose and pouring 150 µl into 1.5 × 1.6 gene frame (Thermo Scientific AB0577) attached to the slide. For pad formation, the gene frame was sealed by a coverslip until agarose solidified. Six microliters of cells were pipetted onto the agar pad, allowed to dry and sealed with a clean coverslip. For the induction of OMPs from a plasmid, 0.4% (w/v) arabinose was added directly into the growing culture 7 min before samples were taken, unless stated otherwise.
For live-cell labelling, an equivalent of 1ml of cells at OD600 = 0.25 were pelleted by centrifugation (7,000g, 1 min) and the samples were resuspended in supplemented M9-glucose medium containing 200 nM fluorescently labelled MAB2. Labelling was carried out for 20 min at room temperature with mixing by rotary inversion in an opaque tube. Subsequently the cells were washed twice (M9-glucose) by pelleting (7,000g, 1 min) and finally resuspended in ~50 μl M9-glucose. For fixed cell labelling, cells were pelleted by centrifugation (7,000g, 1 min) and the samples were resuspended in 4% formaldehyde (in PBS) at 4 °C immediately after sampling. After 20 min, cells were pelleted by centrifugation (7,000g, 1 min) and resuspended in 100 μl of fresh supplemented PBS containing 200 nM fluorescently labelled Fabs or colicins. Labelling was carried out as with live cells. After labelling, cells were washed 3 times (in PBS) by pelleting (7,000g, 1 min) and finally resuspended in ~50 μl PBS. To improve binding of the MAB2 Fabs in co-labelling experiments, after the labelling step cells were washed once (in PBS), pelleted (7,000g, 1 min) and resuspended in 4% formaldehyde (in PBS) at 4 °C for further 20 min. Cells were then washed twice (PBS) and resuspended in ~50 μl PBS.
The fluorescent -amino acid HADA (Tocris Bioscience) was used for cell wall labelling. The labelling was carried as described previously61 with minor adjustments. The final concentration of HADA in the growing culture was 500 µM and the incubation time varied according to the aims of the experiment. When both PG and OMP labelling were included, the HADA labelling protocol was used first. After completing the last step of HADA labelling (fixation), samples were labelled using the relevant colicins as described above. For P. aeruginosa polar displacement experiments, HADA was added to the overnight culture and washed before resuspension in fresh medium.
For E. coli, chromosomal expression of FepA was induced by the addition of 200 µM 2,2 Bipyridyl (Sigma-Aldrich) to LB medium during mid-log phase. For, K. pneumoniae, chromosomal expression of IutA was induced by growing U11 cells in LB overnight (stationary phase) and transferring them into fresh M9. For P. aeruginosa, suppression of FpvAI and FptA expression for polar displacement experiments was carried out by growing PAO1 cells in M9 overnight (stationary phase) and transferring them into fresh LB medium containing 200 µM FeCl3.
Live cells were imaged using an Oxford NanoImager (ONI) super-resolution microscope equipped with four laser lines (405, 473, 561 and 640 nm) and ×100 oil-immersion objective (Olympus 1.49 NA). Fluorescence images were acquired by scanning a 50 µm × 80 µm area with a 473 nm laser for AF488- and GFP-labelled proteins (laser power 1.4–2.3 mW) or 561 nm for mCherry-labelled proteins (laser power 2.1–3.4 mW). The laser was set at 50° incidence angle (200 ms exposition), resulting in a 512 × 1,024 pixel image. Images were recorded by NimOS software associated with the ONI instrument. Each image was acquired as a 20-frame stack for brightfield and fluorescence channels, respectively. For analysis, images were stacked into composite images using average intensity as a projection type in ImageJ (version 1.52p). To ensure non-uniform fluorescence of labelled OMPs was not the result of proximity to the coverslip, equivalent images were taken in epifluorescence and by 3D-SIM microscopy where such potential bias was absent.
Cells were imaged using Deltavision OMX V3 Blaze microscopy system (GE Healthcare) equipped with four laser lines (405, 488, 593 and 633 nm), pco.edge 5.5 sCMOS cameras (PCO), a standard or a green/red drawer filter set and a ×60 oil-immersion objective (Olympus 1.42 NA). Three-dimensional-SIM three-colour images were taken using Deltavision OMX-SR microscopy system (GE Healthcare) equipped with four laser lines (405, 488, 568 and 640 nm), pco.edge 4.4 sCMOS cameras (PCO) and a ×60 oil-immersion objective (Olympus PlanApo 1.42 NA). For both conventional and SIM imaging 1.512 index refraction immersion oil was used for AF488- and GFP-labelled proteins and for mCherry/GFP/HADA three-colour imaging. For mCherry-labelled proteins or AF488–mCherry dual-colour imaging 1.514 index refraction immersion oil was used. Conventional fluorescence images were acquired by imaging a 42 μm × 42 μm area with the 488 nm laser (5.7 mW, 500 ms exposure) resulting in a 512 × 512 pixel image. For SIM acquisition, a similar area was imaged using the 488 nm laser (2.7 mW, 200 ms exposure). Image stacks of 1–1.5 μm thickness were taken with 0.125 μm z-steps and 15 images (three angles and five phases per angle) per z-section and a 3D structured illumination with stripe separation of 213 nm and 238 nm at 488 nm and 594 nm, respectively. The SIMcheck plugin (ImageJ) was used to assess the data quality of SIM images. Image stacks were reconstructed using Deltavision softWoRx 7.2.0 software with a Wiener filter of 0.003 using wavelength specific experimentally determined OTF functions. Average intensity and 3D projections of 3D-SIM images were generated using ImageJ (V1.52p).
For the acquisition of multi-channel images, a DIC image was taken first followed by an imaging sequence which minimized any possible overlap between channels. Fluorophores with higher excitation–emission spectra were imaged first and the fluorescent signal was bleached prior to the acquisition of the following channel. Alignment of dual-colour images was carried out using TetraSpeck Microspheres, 0.1 µm (ThermoFisher scientific) and the channel aligner tool (ImageJ V1.52p).
Two-dimensional SIM images of BamA labelled cells were binarized and regions of interest (ROIs) were generated. Non-distinct islands were manually excluded. The size of each island was calculated based on its Ferret’s diameter (ImageJ V1.52p). For measurement of septal cell widths, the DIC and epifluorescence images were overlaid and the HADA channel used to determine the location of the developing septum along the long axis of the cell. Measuring the width of the cell at the selected region was done using the DIC channel (ImageJ V1.52p).
For the detection of islands and creating integrated localization maps an Unsharp mask filter (Radius 2 px, Mask weight 0.5) was applied to the raw images and BamA islands identified using the Find Maxima process (Prominence >创建了600)(ImageJ)和ROI。使用原始图像测量每个ROI的荧光强度,并减去背景荧光。使用ImageJ插件Microbej(v5.13m)62创建了巴马群岛的集成定位图。为了检测使用Microbej的巴马群岛,如上所述,应用了Unsharp遮罩过滤器。使用Microbej插件进行了细胞和最大点检测,在某些情况下,自动分割被手动校正以排除不当检测到的或簇状的细胞。
对单个荧光强度曲线的测量以及OMP的归一化荧光分布的计算如下:对于早期实验(图1和相关的补充图),跨膜外膜长轴的荧光分布由图(ImageJ V1.52)确定。测量原始值后,将它们归一化为0-1,以在细胞之间进行比较。为了使荧光强度分布与不同长度的细胞的整合,将每个细胞的长轴标准化为0-100。在后来的实验(图2–4和相关的扩展数据数字)中,使用MicroBej插件(v5.13m)自动化了荧光强度曲线和长轴之间的荧光强度曲线和归一化。在所有单元格集成曲线之后,将极点设置为1,其余值相应地归一化。使用Excel进行了归一化,并将数据绘制在GraphPad Prism 8软件中。
使用Microbej插件(v5.13m)创建了大量细胞中OMPS荧光分布的人口统计。每个人群都包含来自至少三个不同视野的细胞。对于所有实验,将细胞按长度分类,以突出不同的细胞周期阶段。对于诱导的OMP生物发生实验,将具有较高荧光强度的极点排列到顶部,以突出单极分布模式。
为了进行共定位测量,使用“合并通道”工具(ImageJ v1.52)覆盖了两个比较的通道(以下通道对齐),以确认细胞正确排列。接下来,对405nm通道的荧光图像进行阈值,并且仅创建了包括包含细胞区域的ROI。COLOC 2工具用于计算不同荧光通道之间ROI的Pearson相关系数。使用ImageJ插件JACOP63完成了细胞荧光图绘图。
以下实验代表了两个独立的生物学重复:图2。2d,h,3b和4a以及扩展数据图。1c,2a,b,d,h,3d,4f,5a,d,h,7b,e,8a,c,e,9a,e和10c,f,g。
以下实验代表了三种独立的生物学重复:图2。2a,f,g,3c – e和4d和扩展数据图2。2G,3A,4G,6C – L,7C,D,F,G,8D和10E。
以下实验代表了四个独立的生物学重复:扩展数据图2。1b,2f,3b,4a和9b。
使用两尾学生的t检验或非参数Mann-Whitney测试对显着的P值进行了验证。
有关研究设计的更多信息可在与本文有关的自然研究报告摘要中获得。