干细胞严格调节死细胞间隙以维持组织适应性

2025-06-22 18:44来源:本站

  The following previously generated mouse lines were used in this study: Rxrafl (ref. 41; Jax stock 013086), Sox9-creER (ref. 42), Krt14-rtTA (ref. 43; Jax stock 008099), Rosa26lox-STOP-lox-YFP (ref. 44; Jax stock 006148; referred to as R26YFP),ROSA26MTMG(参考文献45; JAX Stock 007576;称为R26MTMG),Rosa26brainbow2.1(参考文献46; JAX Stock 013731,称为R26brainbow2.1)R26CAS9-EGFP),ROSA26LOX-Stop-lox-DTA(参考文献48; JAX Stock 010527,称为R26DTA)和MERTK - / - - (完整敲除;参考文献49)。本研究中使用的MERTK-KNOCKOUT小鼠被称为原始论文中的Mertk - / - V2。野生型CD1或C57BL/6小鼠最初是从Charles River和Jackson Laboratories购买的,并像在房屋殖民地一样维持。

  在洛克菲勒大学(Rockefeller University)的比较生物科学中心(CBC)的无病因条件下维持和繁殖小鼠,该大学评估和认证实验室动物护理协会(AALAC)认可的设施。MERTK-KNOCKOUT小鼠和C57BL/6J野生型对照(维持单独的菌落)被繁殖并在耶鲁大学的一家不含病原体的设施中繁殖并维持。所有小鼠均在严格的12小时光周期下繁殖并维持,并用标准食物喂养。动物室的温度为20–26°C,湿度为30-70%。成年小鼠被安置在笼子里,最多只有五只小鼠。所有小鼠方案均由洛克菲勒大学的机构动物护理和使用委员会(IACUC)或耶鲁大学的IACUC批准。

  为了对对照小鼠和突变小鼠之间的表型进行比较评估,使用了年龄和性别匹配的小鼠,并且偏爱在可能的情况下对同窝对照组,而在可能的情况下,每个基因型或条件都大于三只小鼠或三只小鼠。对于我们诱导的过表达研究,将KRT14-RTTA +/-(杂合)男性与CD1女性交配,并在E9.5处用慢病毒转导所有后代(请参见以下各节)。两种基因型的后代通过腹膜内注射(每只小鼠0.5 mg)在p14处接受强力霉素,以在12小时内激活KRT14-RTTA,并通过喂食母亲和幼犬多克环素(2 mg kg-kg-1)cho(Bioserv)来保持表达。KRT14-RTTA-小鼠用作对照,将KRT14-RTTA+小鼠用作实验组。为了生成RXRA控制和CKO小鼠进行实验,将RXRAFL线与Sox9-Creer+交叉;R26YFP小鼠。Sox9-creer-小鼠具有任何RXRAFL; R26yfpGenotype,rxrafl/+; Sox9-creer+; r26-yfpfl/+小鼠用作对照组,而实验小鼠为rxrafl/fl; sox9-creer+; r26-creer+; r26-yfpfl/+。所有小鼠接受了他莫昔芬(玉米油中的2%)(Sigma-Aldrich),以激活Sox9-Creer,每天每天通过腹膜内注射一次3天,每天通过腹膜内注射一次。Sox9-creER was similarly activated when crossed to R26mTmG (to label HFSCs prior to FACS-isolation and culture), R26Brainbow2.1 (to stochastically label HFSCs and identify functional phagocytes), R26Cas9-EGFP (to mosaically knockout Rxra), and upon transduction with the inducible Cyp26b1 expression construct (toHFSC中的RA降级)。为了使Sox9-Creer稀疏地越过R26DTA,在第二次催化中,将2%的他莫昔芬在腹膜内注射一次。

  雄性和雌性小鼠的头发周期长度不同,因为女性的端基静脉阶段较长,但在整个头发周期中进行了类似的发展。除了性别,压力和个人还会影响发循环阶段。因此,我们始终通过视觉检查确定头发周期阶段,并在切片组织上进行形态学分期。具体而言,对于C57BL/6纯背景和混合背景,通过用电剪子修剪全长的毛发来露出背面皮肤来进行视觉检查。毛囊进入Anagen是通过皮肤变暗和头发再生的确定的。通过降低皮肤的闪电来确定catagen的进展,该皮肤在Anagen的末端看起来是黑色的,从而被晚Catagen几乎完全完全丧失了色素沉着(灰色粉红色的皮肤)。进入Telogen的出现标志着完全没有抚摸(粉红色)皮肤。在未辅助的小鼠(CD1菌株)中,使用毛囊形态的组织学分析来确认基于相对年龄的毛发循环分期。

  对于所有实验,与每只小鼠并联采取一小部分中线背皮,并处理切片和免疫荧光,以精确地置于头发周期。头发周期是基于毛囊形态的上演,50,51,52,53,以及通过免疫荧光的Anagen标记(2 H脉冲追逐或Ki67染色后的EDU-掺入),CATAGEN(CATPASE-3和/或TELEL效率)或Telogen(PSMAD)或telogen(PSMAD1/5/5/9和/或/或/或/或/或/或/或/或/或/或/或/或/或/或/或/或/或/或/或/或/或lefff)对于从Anagen或catagen阶段小鼠获得的样品,在实验前沿前后轴将背部背部皮肤细分为两个,因为精确的头发循环阶段与后部有所不同(前方的前部一般一个替代)。对于Anagen样品,对腹膜内注射5'-乙基-2'-脱氧尿苷(EDU)(50μgG-1)(Sigma-Aldrich),并在收集之前追赶2小时。

  为了评估HFSC介导的凋亡尸体清除率在Catagen中的植物循环缺陷,如上所述生成了Catagen特异性RXRA控制和CKO小鼠的同类。如下所述,产生了类似的HX531或膜联蛋白V内注射的野生型CD1小鼠。在第二次用于皮肤变暗(RXRA系列)和头发再生(所有实验范式)的端基的过程中,两组小鼠均经过剃光和检查。在Anagen重新进入的初始迹象(皮肤变暗和/或小头发破裂皮肤表面)时收集小鼠。对于RXRA系列,一旦一只动物显示出阿纳根的迹象,就收集了共同的同窝仔。根据所述的毛囊形态和免疫荧光进行了毛发循环,如所述并进行了比较,并在每只小鼠内(rxra line)或对侧媒介物和抑制剂在每只小鼠内注射后皮肤(内部操纵)中注射背部皮肤。

  制作tre-rxra-myc;PGK-H2B-RFP,人RXRA cDNA是从PSV-Sport-RXRα(B. spiegelman的礼物; Addgene#8882)54中扩大PCR的,并在5'端引入了NHEI位点。然后将其插入被修改的PLKO矢量的NHEI和ECORI限制位点中,以包含5'端的诱导型四环素响应元件,以及3'MYC EPITOPE标签。在将这种构建体包装为慢病毒之前,使用FACS溶解的KRT14-RTTA+角质形成细胞在E300培养基中测试了RXRα的诱导。简而言之,按照制造商的方案(Invitrogen),使用效应的效应式将细胞用TRE-RXRα构建体瞬时转染为6孔板格式的角质形成细胞。48小时后,加入多西环素(100 ng mL-1)以诱导RXRα表达24小时。如细胞培养物免疫荧光所述,将细胞固定并为MYC-TAG和RXRA染色。

  为了确定针对小鼠RXRA的有效CRISPR单引导RNA(SGRNA),我们分别在5'和3'(IDT)中合成了靶向外显子4的寡核苷酸。根据Zhang Laboratory Protastion55,将补充序列可用。为了选择用于体内使用的指南,我们首先使用K14CRE+测试了培养的切割效率。R26CAS9-EGFP表达角质形成细胞。按照制造商的方案(Invitrogen),使用效应元素以6孔板格式将五肽 - 二元构建体瞬时转染到角质形成细胞中。72小时后,使用Quickextract DNA提取溶液(Lucigen)收集基因组DNA,并通过加热至65°C制备指导DNA 10分钟,然后在95°C的热灭活2分钟。在每个指南目标区域进行PCR扩增后,使用T7核酸内切酶I切割测定(NEB)来确定每个指南的插入和/或缺失的程度。最有效的指南在体外显示了约70%的基因组编辑事件,并将其U6启动子克隆到一个修改后的PLKO载体中,该载体含有组成型PGK驱动的Mscarlet Mscarlet荧光团(3'to SGRNA)进行杀虫剂制备。

  为了识别对RA响应的细胞,我们获得了T. M. Underhill(addgene质粒#13458; http://n2t.net/addgene:13458)的礼物,并将RA响应元素(稀有)驱动到MIDIFIED PLKO BAKENED PGNEDRPLED,并将pg的pge推向pg40H2B-GFP56。

  为了从诱导细胞中耗尽活性RA代谢产物,我们从CAG启动子中过表达的小鼠CYP26B1 cDNA(Origene,MC205286),在改良的PLKO Backbone中被Lox-Stop-Lox(LSL)盒子中断。作为病毒控制,我们在相反的方向上使用了PGK驱动的RFP56。

  制备高尊态慢病毒,并用超声引导的微注射给羊膜囊中的慢跑病毒感染了指示基因型的E9.5胚胎,如前所述57,58。在E9.5,表面外胚层作为单层未指定的皮肤祖细胞存在,可以有效,有选择地且稳定地通过病毒DNA转导,而无需转导真皮细胞类型58。

  将所有主要的HFSC系生长在丝裂霉素C灭活的3T3/J2馈线成纤维细胞上,并维持在E中间(300μm)钙培养基59中,补充了10μmY-27632(shareckeckchem)(shareckeckchem)(e300-y Medued)60。在DMEM/F12培养基(Thermo Fisher Scientific)中扩展了3T3/J2成纤维细胞线59,具有10%CFS(Gibco),100 U ML -1链霉素和100 mg ML -1青霉素。细胞在37°C下生长,二氧化碳为7.5%,培养基每2-3天常规更换一次。将细胞系生长至汇合,然后通过在37°C下用0.25%胰蛋白酶EDTA(GIBCO)消化5-10分钟,然后与培养基重悬于培养基中。在第8-10通道下用细胞进行实验。对于实验,将细胞切换为没有Y-27632(E300培养基)的E中间钙培养基,并在实验前培养24-48小时。所有细胞系均保持在培养设施中,通常测试对支原体污染的阴性。

  初级HFSC是从第二个telogen处的以下小鼠交叉得出的:R26-MTMGFL/+;Sox9-Creer-(mtomato+ HFSC制造凋亡尸体和坏死碎片),R26-MTMGFL/+;SOX9-CREER+(MGFP+ HFSC使Naive HFSC暴露于尸体),RXRA+/+;Sox9-Creer+;R26-YFPFL/FL(RXRA野生型YFP+ HFSC)和RXRAFL/FL;Sox9-Creer+;R26-YFPFL/FL(RXRA CKO YFP+ HFSC)。所有HFSC均被FACS分离(后面描述),并如下所述进行培养。为了生成RXRA野生型和CKO HFSC系,分离了细胞(后面描述),并在4-羟基氧法昔芬(4-OHT)激活Sox9-Creer之前建立了培养物。在第2通道,Sox9-creer在4-OHT溶液中被激活(Sigma Aldrich)。为此,在E300-Y培养基中以1μM的最终浓度使用它来治疗HFSC。每天连续三天对中等加4-OHT刷新,然后用E300-Y取代。在FACS分离YFP+细胞之前,允许HFSC再生长4天。所有HFSC线以及3T3/J2成纤维细胞系在功能和形态上均分别为HFSC或成纤维细胞线。

  为了生成带有PGK驱动的H2B-GFP(“稀有记者”)的稀有RFP的HFSC,如所述56所述,将稀有的重复蛋白病毒转导为源自第二个Telogen小鼠的野生型原代HFSC,将稀有变形蛋白病毒转移到野生型原代HFSC中。根据H2B-GFP对FACS进行了稳定的集成稀有型HFSC,并通过添加100 nm 9cra或100 nm ATRA±1μMAGN 193109确认了4-6小时内稀有驱动的RFP诱导。

  在试验实验中,RXRα或RARγ的核积累(通过免疫荧光)在尸体暴露后30分钟达到峰值,因此,在随后的实验中,使用时间点来评估尸体衍生信号或重组分子的直接影响。类似地,在尸体加入后4-6小时,含尸体的HFSCS的数量以及吞噬程序的转录激活,吞噬受体的表面表达和尸体吞噬(FACS后两个)在当时进行了评估(补充图7)。

  为了制备尸体或第二坏死性碎屑,将完全汇合的mtomato+ HFSC用200μM顺铂(以0.9%盐水为例)处理18 h(凋亡尸体)或48 h(坏死性碎屑)。通过在700g的颗粒中从上清液中收集死亡和垂死的细胞,持续5分钟,用E300培养基清洗一次,然后以新鲜的E300培养基返回板。在返回浮动尸体之前,用PBS冲洗死亡的粘附细胞以去除残留的顺铂,并添加了最少的新鲜E300培养基。允许尸体或坏死碎片再调节培养基3-4小时。通过敲击板的侧面并将培养基放在它们上拆下垂死的细胞,从而收集凋亡的细胞尸体。像以前一样,通过离心收集浮动和分离的尸体。在重悬于最少的新鲜E300培养基中之前,将尸体条件的培养基小心地移到单独的管中。为了标记衍生自3T3/J2成纤维细胞的任何尸体/碎屑,接下来将尸体与DII-CM(Invitrogen)在37°C下在37°C下孵育5分钟,然后像以前一样用PBS洗涤。将DII/MTOMATO+尸体重悬于其尸体条件培养基中,以大约10个尸体的比例直接计数和等分(在其条件培养基中)直接在实验板上(培养基去除):1 HFSC。对于尸体条件的培养基实验,如所述制备尸体,然后在1,200g的培养基中旋转10分钟。在使用前,通过0.45μm注射器过滤器进一步施加了尸体条件的培养基。尸体,坏死碎片和/或条件培养基在使用之前始终立即制备。

  Manipulation of corpse-derived signals was achieved by adding small molecule inhibitors to the corpses after the removal of cisplatin (16 μM BEL (Sigma Aldrich); 100 nM MPA08 (Tocris Bioscience)) or by incubating the corpses with recombinant molecules for 15-20 min prior to adding them to naive HFSCs (1 U Apyrase;1 ng mL -1膜联蛋白V(均为Tocris Bioscience))。将媒介物处理的对照芯与1%DMSO孵育。对尸体条件进行了类似的准备。为了操纵HFSC上的尸体感应机制,用指定的拮抗剂预测幼稚的MGFP+或YFP+或稀有的Rebreter HFSC(1 nm UVI3003;1μmHx531;1μmHx531;1μmHX531;1μmJTE013;1μmJTE013; 100 nm BMS 77777777777777777777777777777777777777777777777777777777777777777777777607; 1μmmiscimenioscriist; 1μmmiscris; 1μmmiscris; 1μmmiscris;一个:研发系统)在尸体或尸体条件培养基之前30分钟。当添加尸体或条件培养基时,通过在尸体和/或条件培养基中添加额外数量的适当化合物来保持拮抗剂的浓度。实验是在生物学副本或一式三份中进行的,并在不同的日子中重复两次。对于数据可视化,除非在图传说中另有说明,否则跨独立实验的所有重复表示。并行进行小分子抑制剂来操纵尸体衍生的信号的实验,从而存在一组核心的对照培养基和尸体+VER实验重复。出于介绍的目的,将小分子抑制剂按照它们在单独的图板中影响的吞噬作用的步骤进行分组,因此每个对照培养基和CORPSES+ver的核心集对每种都重复(图4B和扩展数据图3G,6d和7a)。

  为了测试重组分子概括尸体分泌信号的能力,在E300培养基中培养了MGFP+或YFP+或稀有的Reporter HFSC,加上指示的重组分子浓度(参见图和图形传说)。根据制造商的说明,制备分子并作为库存解决方案存储。简而言之,将9CRA和ATRA(两个R&D系统)分别溶解在100%DMSO中,免受光线保护,并在-80°C下长期存储在-20°C下的工作解决方案。重组LPC,S1P和AA(所有Tocris Bioscience)均溶解在100%乙醇中,并像类维生素类似一样储存。自由核苷酸作为100毫米DATP或DUTP作为超含水(NEB)中的钠盐,并存储在-20°C下。将储备溶液单独稀释或与E300培养基组合进行实验。实验是在生物学副本或一式三份中进行的,并在不同的日子中重复两次。对于数据可视化,除非在图传说中另有说明,否则跨独立实验的所有重复表示。实验测试了重组分子在培养的HFSC中诱导RXRα+或RARγ+核积累的不同浓度和组合的实验,并并行进行培养的HFSC,因此存在核心的对照培养基实验重复集合。出于介绍的目的,将一组浓度划分在单独的图面板上,因此在每个图中重复了介质控制实验的核心集(图4D和扩展数据图7E)。

  为了检查体外重复暴露于坏死损伤的影响,如上所述,由实时HFSC,凋亡尸体或坏死碎片制备条件培养基。为了进行增殖研究,将天真的MGFP+ HFSC暴露于成纤维细胞馈线上的96孔板中,每天三次暴露于新的条件培养基中,在Biotek Cytation 5细胞成像多模读仪中,通过GFP荧光计数细胞。实验在三个生物学重复中进行了建立,每天计数细胞数量。通过显示一个代表性实验,独立进行了三次实验。为了评估重复暴露于坏死碎片对菌落形成效率和大小的影响,将天真的MGFP+ HFSC铺在成纤维细胞喂食器上的12孔板中,并暴露于有条件的培养基中,如进行增殖研究。第三次暴露于条件培养基后的二十四,通过胰蛋白酶化收集HFSC,用PBS洗涤,并在E300-Y培养基中以每次重复的10,000 HFSC的密度在成纤维细胞喂食器上进行了重复。4天后更换培养基,并在此之后的每第二天更改,总计14天的生长。在Biotek Cytation 5细胞成像多模读器中,通过GFP荧光对菌落数和大小进行定量。实验三次进行了两次实验,并显示了所有六个重复。

  对于在HX531或膜联蛋白V注射的小鼠上形成菌落测定,如下所述,原发性HFSC是从未注射的野生型或对侧皮肤部位的FACS分离的,如下所述。用DII-CM染色分离的HFSC,如尸体制备所述,然后在3T3/J2进料器成纤维细胞中分别在E300-Y培养基中的3T3/J2进料器成纤维细胞上进行镀板,每个培养基的3T3/J2馈线成纤维细胞,并允许在更改培养基之前生长4天。种子后一周,使用明亮的场和RFP(DII-CM)荧光在直立的荧光显微镜下计数菌落数和大小。平均一式三份技术,每只鼠标显示数据。

  第二次catagen(CATII)的成年小鼠在接受皮内注射之前使用异氟烷进行麻醉。在整个过程中,使用鼻锥进行输送,在整个过程中保持了异氟烷麻醉。用电剪子剃光后皮肤,并用乙醇湿巾擦拭表面。通过在无菌PBS中稀释适当的化学物质加1%氟酸盐改造的微球(1.0μM,Thermo Fisher Scientific F8816)来评估注射到组织切片的位置,从而制备了含有溶液的媒介物或小分子。为了找到随后几天重复进行皮内注射的注射部位,用永久标记制成了一个小点,将针头插入。用针弯向45°的针头胰岛素注射器的一毫升胰岛素注射器被用来通过表皮浅注射到距注射部位约3-5 mm的真皮空间。注射体积为25μL,每个注射部位递送,平均每只小鼠4个注射位点:两个前和两个后部。媒介物注射(10%DMSO)被随机指定为左侧或右侧,对侧皮肤接收指定的小分子。注射后,将小鼠放在他们的家笼中,在加热垫上恢复。从相同的库存溶液中以100倍的细胞培养溶液制备化合物。为了抑制整个CATAGEN过程中的吞噬程序,进行了三次的皮内注射,分别为20-24 h。最终注射后4小时(在CATVII – VIII)通过致命二氧化碳给药对小鼠安乐死,或允许进入端基进行进一步分析。对于菌落形成测定,注射的小鼠在Catagen结束后2天安乐死了 将背皮手动剖分为10 mm2,围绕注射部位,而HFSC被分离出FACS,如下所述。将分离的HFSC铺在馈线上,并如上所述分析菌落形成测定法(上图)。为了分析在catagen期间对尸体吞噬的短暂抑制后的头发循环缺陷,如上所述,在第二次催化的过程中,在第二次催化的过程中遵循了皮内注射的小鼠。

  为了对组织切片进行免疫荧光分析,致死性二氧化碳及其背部皮肤后,剃光小鼠。将后皮肤延伸到Whatman纸上以保持稳定性,并在4°C下分别在1%或4%的多聚甲醛(PFA)中以1%或4%的前缀为前缀,分别在25°C下或30分钟。固定后,将组织用PBS在4°C下两次洗涤10分钟,然后在4°C的PBS中在30%的蔗糖中孵育过夜。将组织嵌入OCT培养基(VWR)中,并将其冷冻在干冰块上,然后在-80°C下存储。或者,将新鲜的冷冻组织无需前缀制备,通过将皮肤直接嵌入OCT将其放在Whatman Paper上后。将冷冻的组织块在Leica低温恒温器上以20 um的截面为单位,并安装在Superfrost Plus幻灯片(Thermo Fisher)上。必要时,使用前将切片存储在-20°C之前。

  Following sectioning, tissue was allowed to dry on the slide for 1 h in a partially closed slide box. Fresh frozen tissue was post-fixed with 4% PFA for 5 min, followed by washing in phosphate-buffered saline (PBS) three times for 5 min each. Pre-fixed tissue sections started with the PBS wash step to remove attached Whatman paper. Following washes, samples were permeabilized and blocked in blocking buffer (5% donkey serum, 2.5% fish gelatin, 1% BSA, 0.3% Triton in PBS) for 1 h at room temperature. Primary antibodies were incubated overnight at 4 °C, samples were washed for 5 min in PBS (three times) at room temperature, and secondary antibodies were incubated together with DAPI (to label nuclei) for 1 h at room temperature. Following three final PBS washes of 5 min each, samples were mounted in Prolong Diamond Antifade Mountant (Invitrogen) for imaging. For TUNEL labelling, the Cell Death Detection Kit (TMR red or FITC; Roche) was used according to manufacturer’s instructions, with application of secondary antibodies. A modification was made to halve the concentration of the substrate labelling component to reduce background fluorescence in the skin. For phospho-STAT3 staining, tissue was incubated in ice-cold methanol for 20 min at −20 °C, followed by three times PBS washes prior to blocking. Antibodies were used as follows: rabbit anti-cleaved-caspase-3 (Cell Signaling, 9661, 1:250), rat anti-RFP (Chromotek, 5F8, 1:1,000), rabbit anti-RFP (MBL, PM005, 1:1,000), chicken anti-GFP/YFP (Abcam, ab13970, 1:1,000), goat anti-P-cadherin (R&D, AF761, 1:250), rabbit anti-keratin14 (Fuchs laboratory, 1:200), rabbit anti-keratin24 (Fuchs laboratory, 1:200), sheep anti-Ki67 (Novus Biologicals, AF7649, 1:200), rabbit anti-MYC epitope (71D10) (Cell Signaling, 2278, 1:250), rat biotinylated anti-CD45 (Biolegend, 5530, 1:200), rabbit anti-RXRα (D6H10) (Cell Signaling, 3085, 1:250), rabbit anti-RARγ (D3A4) (Cell Signaling, 8965, 1:250), rabbit anti-MFGE8 (Invitrogen, PA5-109955, 1:200),大鼠Alexafluor647偶联的抗F4/80(BM8)(Biolegend,123121,1:200),大鼠生物素基化抗ITGA6(也称为CD49F)(GOH3)(GOH3)(Biolegend,Biolegend,313603,1:500),CARBBIT ANTI ANTI ANTI ANTI ANTI ANTI(60a)(60a)(60a)1:250),兔抗fosb(5g4)(细胞信号,2251,1:250)和兔抗磷酸-STAT3(Tyr705)(D3A7)(D3A7)(细胞信号,9145,1:250)。所有使用的二级抗体均在驴宿主中饲养,并与Alexafluor488,Rhodamine或Alexafluor647(Jackson Immunoresearch Laboratory; 1:500)结合。驴抗兔抗体(711-545-152; 711-295-152; 711-295-152; 711-605-152; 711-605-152)的目录编号(按:Alexafluor488,Rhodamine和Alexafluor647 con轭物)用于驴抗抗体(711-545-152; 711-295-152; 711-605-152)712-605-150),用于驴抗chicken抗体(703-545-155; 703-295-155; 703-605-155),用于驴抗山goat抗体(705-545-003; 705-295-295-003; 705-295--003; 705-5-003; 705-605-605-003),以实施抗体抗体(705-545-003;Alexafluor647(713-605-003)。4',6-Diamidino-2-苯基吲哚(DAPI)用于标记核(1:10,000)。为了共同染色RARγ和RXRα,使用兔子特定的Zenon Zenon抗体标记Kit(热fishericic and Manducturer's Instraction's Constractions的指令,使用兔子的主要抗体直接与Alexafluor350,Alexafluor488,Alexafluor568或Alexafluor647直接连接到Alexafluor350,Alexafluor568或Alexafluor647。

  对组织切片进行处理,固定和切片,以适应正常的免疫荧光,并进行一次修饰。将组织冷冻切除术(25μm)放在涂有铬明胶校友的玻璃底玻片井中,以牢固地将组织粘附在玻璃盖玻片上。如所述61遵循IBEX协议,并进行以下修改。通过阻断缓冲液(以上)阻断后,将组织与原代抗体在室温下直接连接至荧光团3小时,然后使用旋转盘共聚焦显微镜进行PBS洗涤和成像。DAPI如前所述,用作基准污渍,以对齐迭代周期的图像。为了在染色和成像的迭代循环之间进行漂白荧光团,我们将组织暴露于1 mg ml -1的硼氢化锂在室温下15分钟,然后进行三个1×PBS洗涤。所使用的抗体如下:(面板1)大鼠抗Foxp3-alexfluor488(fjk-16s)(Thermofisher,53-5773-82,1:100),原位细胞死亡检测试剂盒,TMR红色(Roche),Rat anti CD8-CD8-aLati-cd8-aleti-cd8-aleti-cd8-alexalexafluororgn7(100724)(面板2)大鼠抗CD206-ALEXAFLUOR488(MMR)(Biolegend,141710,1:500)和大鼠抗CD68-CD68-ALEXAFLUOR647(Biolegend,137004,137004,1:500);(3)大鼠抗CD11C-ALEXAFLUOR488(N418)(Biolegend,117311,1:100)和大鼠抗LY6G-LY6G-ALEXAFLUOR647(1A8)(Biolegend,127610,1:150);(面板4)大鼠抗ITGA6-ALEXAFLUOR488(BIOLEGEND,313608,1:150)和大鼠抗Langerin – Alyxafluor647(929f3.01)(Novus Biologicals,DDX0362A647-100;(面板5)大鼠抗F4/80-alexafluor488(Biolegend,123122,1:150)和大鼠抗CD172A(SIRPα)-Alexafluor647(Biolegend,144028,1:150);(第6面)仓鼠抗TCRGD-ALEXAFLUOR488(BIOLEGEND,118128,1:100)和大鼠抗TIM4-ALEXAFLUOR647(RMT4-54)(RMT4-54)(Biolegend,130008,1:150);(第7面板)大鼠抗CD4-ALEXAFLUOR488(RM4-5)(Biolegend,100529,1:100)和大鼠抗CD3-CD3-ALEXAFLUOR647(17A2)(Biolegend,100209,1:100);(面板8)Avidin – Fitc(Thermofisher Scientific,A821 1:1,000) 和大鼠抗I-A/I-E(MHCII) - Alexafluor647(M5/114.15.2)(Biolegend,107618,1:150);(面板9)大鼠抗CD45-ALEXAFLUOR488(BIOLEGEND,103122,1:150)和大鼠抗P-钙粘蛋白-Alexafluor647(R&D Systems,Fab761R-100UG,1:200)。

  对于免疫荧光实验,将馈线分为多赖氨酸涂层玻璃盖板,在添加HFSC之前24小时在12孔板中播种。在通过重复的PBS洗涤将馈线分离之前,将HFSC种植至汇合,并进行尸体或尸体条件的培养基实验。在实验结束时,将细胞用PBS洗涤两次,并在25°C下用4%PFA前缀3分钟。将细胞用PBS洗涤3次,并染色为组织切片。

  Sox9-Creer的图像;ROSA26BRAINBOW2.1使用Zen-Software驱动的Zeiss LSM 780倒激光扫描共聚焦显微镜和20倍空气目标(NA = 0.8),40倍水浸泡物镜(NA = 1.2)或63×油浸入目标(NA = 1.4)。要分离CFP,YFP,GFP,RFP和Alexafluor647荧光团,具有特定激光线(405、440、488、514、561、594和633和633)和4个检测器的狭窄波长临界值的激发(440、440、488、514、561、594和633),以cfp(cfp)为cfp(cfp)440 nms priction 440 nm,GFP(激发488 nm,排放500 nm – 515 nm),YFP(激发514 nm,发射525 nm – 570 nm),RFP(激发561 nm,排放595 nm – 620 nm),alexafluor647(alexafluor647)(arexafluor647)(arexafluor647)(兴奋633 nmsissifity 633 nmsiSsiS nm nm nm nm,sof)650 nm,nm,sim – iSsiS nm,nm -siss – iSsiS -ym -iSsiS – iSSiSs -650。由于它们分离良好的激发和发射光谱,GFP和Alexafluor647在同一检测器上同时获得。获取具有1μm步骤的堆栈。共聚焦显微镜在洛克菲勒大学的生物成像资源中心RRID:SCR_017791进行。

  RXRAFL的图像;Sox9-Creer;使用IBEX方法染色的ROSA26YFP组织是在使用40×油浸入物镜,40μm针孔和Zyla摄像机的倒向蜻蜓202旋转磁盘共聚焦系统(Andor Technology Inc.)上获得的。使用了四个激光线(405、488、561和625 nm),用于几乎同时激发DAPI,Alexa-448,RRX和Alexa-647荧光团。使用Andor Fusion软件(V 2.3)获取具有1μm堆栈步骤的瓷砖图像。使用DAPI作为Imaris的基金会和Imaris的SimpleItk Image登记管道插入图像并对齐图像。

  使用Zen-Software驱动的Zeiss Axio观察者获得其他冷冻切除术的图像。Z1Espifluorecence/Brightfield显微镜,带有Hamamatsu Orca-Er摄像头,AxioCam350和Apotome.2 Slider.2 Slider(Z中的光散射)。获取具有1μm步骤的堆栈。通过“ Apotome Raw Convert”函数处理座位座获取的图像,并在ZEN软件(v 3.1)中缝合(如有必要)。随后的图像处理是在ImageJ(v。2.9.0)和Imaris(v。10.1)(牛津仪器)软件中进行的。出于演示目的,将图像裁剪和组装在Adobe Illustrator中。

  为了量化组织切片中的凋亡细胞清除率,用40×或63倍的油浸入物镜获得共聚焦图像,并具有1μm的步长,用P-核蛋白或KRT14染色的组织,以标记细胞边界,DAPI,DAPI,以标记核,并调谐到后期细胞死亡的标记。在单个Z平面图像上,当一个小的TUNEL+凋亡体坐落在具有健康核的细胞的细胞边界内时,将垂死的细胞评分为吞噬,并且可以在连续的Z-stack中进行可视化。根据野生型毛囊ORS细胞的电子显微镜图像,凋亡人体通常是圆形的,并针对健康核。未接管的凋亡细胞要么是大型TUNEL+信号,该信号完全重叠,凝结的核完全与健康细胞的面积约为50-75%,要么被视为小的,不规则形状的TUNEL+碎屑,被推到细胞边界边缘。Tunel+碎屑在皮肤上的 - 上皮交界处或直接与发轴附近的上皮略有普遍,但在细胞边界处的整个ORS也可见。

  将解剖的背皮放在薄纸毛巾上以保持稳定性,并将其固定在2%的戊二醛,4%PFA和2 mM CaCl2中,在0.1 M钠cacododylate缓冲液(pH 7.2)中固定在室温下2小时,在室温下2 h,在1%osmium osmium osmium osmium osmium osmium osimium obsedeced中进行后缀。在使用配备数码相机(AMT BioSprint29)的透射电子显微镜(Tecnai G2-12; FEI)拍摄图像之前,用乙酸铀酰和柠檬酸铅对超薄的分段用乙酸铀酰和柠檬酸铅对抗。在洛克菲勒电子显微镜资源中心处理样品并成像。通过透射电子显微照片对每个干细胞的吞噬凋亡尸体的数量进行定量。

  为了在头发周期的所有阶段获得荧光激活细胞分选(FACS)的单细胞悬浮液,切除背部皮肤,然后用暗淡的手术刀刮下皮肤侧,在温暖的PBS中与0.25%胶原酶(Sigma-Aldrich)孵育,在温暖的PBS中孵育0.25%胶原酶(Sigma-Aldrich),在37-60分钟的塑料中,在37-60分钟内均匀地旋转37°C,均匀均匀。用钝的手术刀轻轻刮擦皮肤侧,以机械地分离下部ORS和头发灯泡的细胞(“真皮馏分”)。皮肤分数仅保存在晚期的阿纳根和早期到中的catagen样品中,并与表皮分数分开处理。为了收集表皮馏分,将皮肤侧放在0.25%胰蛋白酶-EDTA(Gibco)的情况下,在37°C下旋转20-25分钟,并轻轻旋转。将皮肤的毛茸茸的侧面用钝的手术刀刮在头发生长的方向上,以释放上部毛囊中的细胞(包括毛囊凸起的茎和毛发生物祖细胞)。对于皮肤和表皮级分,将所得的细胞悬浮液用5 mL血清学移液管上下移动5分钟,然后用FACS缓冲液(5%胎牛血清,FBS,PBS中)淬灭。将塑料培养皿用5 mL FACS缓冲液冲洗2-3次,并收集并添加到适当的细胞悬浮液中。悬浮液通过连续的70μm和40μm尼龙过滤器(VWR)过滤,然后在4°C下以350g的含量为350g。将细胞颗粒重悬于冰冷的FACS缓冲液中,重新过滤为FACS管,并在冰上与一抗初级抗体一起孵育20分钟。将次级抗体和Lysotracker深(Invitrogen,1:4,000)直接添加到FACS管中,并在冰上孵育10分钟。用FACS缓冲液加DNase(Roche)进一步稀释样品,以在分类或分析之前最大程度地减少细胞团块。为了分析FACS的RXRα水平, 按照制造商的说明,在使用BD Cytofix/Cytoperm试剂盒进行固定和处理之前,用细胞表面特异性的初级和次要抗体染色。主要抗体如下:大鼠生物素化的抗CD45(30-F11)(Ebioscience,13-0451-82,1:200),大鼠生物素化抗CD117(2B8)(2B8)(Ebioscience,13-1171-82,1:200),比例生物素化抗C-CD140A(EBI-CD140A(EBICEN)13-1401-82,1:200),大鼠生物素化抗CD31(390)(Ebioscience,13-0311-82,1:200),大鼠抗CD34-FITC(RAM34)(EBISOSCIENCE,11-0341-82,1:200),RAT ANTI ANTI ANTI ATTI ANTI ATTI ANTI ATTI ANTI ATTI ANTI CD34 – EEBFLUORSICE50-0341-82,1:200),大鼠抗Itga6 – PercpCy5.5(GOH3)(Biolegend,313617,1:250),大鼠抗Ly6a/e-apc-cy7(Biolegend,108125,1000),Rabbit Asti-ratibbit Anti-rati-rant-rant-rant-rant-rant-rant-rant-rant-rant-rxrα(cSt d6h10)(1:1:cSt 3085)抗tyro3/dtk-alexafluor700(R&D Systems,Fab759n,1:200),大鼠抗Mertk-Mertk-Alexafluor700(R&D Systems,Fab5912n,1:200)和大鼠抗Axp-Axkl-AXL-AXL-AXL-AXL-ALEXAFLUOR700(R&D Systems,R&D Systems,R&D Systems,Faf8541n,1:200)。二级抗体如下:Strapavidin-pe-Cy7(1:3,000)和驴Alexafluor 488或Alexafluor568(1:500)。Annexin v-alexafluor568(Invitrogen,A13202,1:100)和/或DAPI分别用于识别凋亡和垂死细胞。对于使用膜联蛋白V的FACS,在膜联蛋白V结合缓冲液(10 mM HEPES,140 mM NaCl,2.5 mM CaCl2,pH 7.4)中进行了初级和二抗染色。对于Aldefluor活性测定,遵循制造商的说明(Aldefluor套件01700,Stemcell Technologies),并在1μM(673-A,R&D Systems 6934)中添加了更具体的ALDH1A抑制剂。

  对于FACS分析,如上所述收集并分析了后皮肤的活细胞悬浮液。另外,将培养的HFSC杀性剂胰蛋白酶胰蛋白酶(如传递细胞系),并在重悬于300G的情况下颗粒,然后重悬于,过滤并与一级抗体一起孵育。每个样品使用BD LSRII流式细胞仪或BD Fortessa流式细胞仪(BD Bioscience)分析了至少20,000个HFSC。与TAM家庭受体,Lysotracker表达,RXRA表达和Aldefluor分析有关的代表性排序方案可以在补充无花果中找到。3–5与扩展数据共同组合。4和8。对于Brainbow2.1 HFSC的分析,使用专门配备445 nm激光器的LSRII用于激发CFP,与YFP/GFP和RFP分开。在严格的门控在双重的情况下,将吞噬性HFSC评分为双阳性(包含一个荧光内的一个荧光尸体),并通过免疫荧光分别确认为吞噬事件。补充图1显示了代表性排序方案。

  For HFSC isolation for single cell RNA-sequencing cells were sorted according to the scheme shown in Supplemental Fig. 2, with an 85-μm nozzle into 96-well PCR plates (Bio-Rad) containing 2 μl of lysis buffer (0.2% Triton X-100, 2 U μl RNaseOUT (Thermo Scientific), 0.25 μM oligo-dT30VN primer, 1:2 × 106稀释的ERCC SPIKE-IN RNA(Ambion)。对于HFSC分离以进行体外培养和大量的ATAC序列,将细胞使用70μm喷嘴分类为E300-Y培养基和FACS缓冲液(补充图3)。与Sox9-Creer有关的代表性排序方案; R26DTA异位尸体反应和HFSC中RXRα的过表达和敲除,在补充图中可用。分别为4和5。如前所述,为了与他莫昔芬治疗或不处理或未处理过的MTMGFL/+,如前所述,我们在MTomato+或MGFP+上配合了CD34+ ITGA6+(补充图6),使用70μmNokenotuge note facs buffer。如图3所述,使用类似的方法来分离培养物的RXRA HFSC系,然后在培养中用4-OH-tamoxifen激活Sox9-Creer。对于大量的RNA测序,使用直接进入TRIZOL和FACS缓冲液的70μm喷嘴对细胞进行分选(补充图7)。分类是在配备Diva软件(v。8.0)(BD Biosciences)的BD FACSARIAII上进行的。

  流式细胞仪是在洛克菲勒大学的流式细胞仪资源中心(RRID:SCR_017694)进行的。使用FlowJo生成流式细胞仪图,以说明用于细胞隔离的策略,并手动补偿出现。

  如先前所述的62,63,使用稍微修改的smart-seq2方案从Anavi,Catvi和Catvii中的FACS分离毛囊上皮细胞制备单细胞RNA序列库。对于每个头发周期阶段,在FACS隔离之前汇总了来自3-6只小鼠的细胞。简而言之,将细胞分类为低渗性裂解缓冲液,在液氮中冷冻的SNAP并保存在-80°C下,直到收集所有样品。通过在72°C加热3分钟通过加热,然后使用DT30寡核苷酸,模板切换寡核苷酸和最大H-逆转录酶对mRNA进行逆转录。KAPA HIFI DNA聚合酶(Roche)扩增了整个转录组(15个周期),然后使用0.6×Ampplure XP珠(Beckman Coulter)进行大小选择。为了排除放大较差的细胞和包含多个细胞的井,进行了定量PCR(QPCR),用于GAPDH。使用Nextera XT DNA库制备试剂盒(Illumina),使用独特的5'和3'条形码组合(最多384个细胞)对Illumina测序文库进行索引。将库合并,并用0.9×增强XP珠选择大小。在使用75 bp配对读取中输出设置的Illumina NextSeq500进行测序之前,通过TapSestation(Agilent)评估了库质量。

  如前所述64,65,66,对20,000–75,000(体内样品)或50,000(培养样品)FACS分类的HFSC进行了ATAC-SEQ。简而言之,将细胞在ATAC裂解缓冲液中裂解1分钟,洗涤,核重悬于转座酶缓冲液中。在37°C下,使用TN5转座酶(Illumina)转置基因组DNA 30分钟,此时反应停止。使用buenrostro64或nextera XT Index kit v2指数,将样品在10-12(体内样品)或一批27(培养的HFSC)的批处理中进行独特的条形码。根据制造商的说明(Illumina)准备测序库。使用Illumina Novaseq 6000(洛克菲勒大学基因组资源中心)上的配对端运行,将库的深度测序为500-1亿序列。

  如前所述,对500,000个培养的HFSC进行了剪切测序,对次要修改为67,68。除非另有说明,否则在室温下执行步骤。除生物样品外,使用(1)兔IgG对照抗体验证了抗体验证和特异性;(2)RXRA-CKO HFSC中的兔抗RXRα。简而言之,将细胞胰蛋白酶作为重新盘子,然后用PBS洗涤,然后重悬于交联缓冲液中(10 mM Hepes-NaOH pH 7.5,100 mm NaCl,NaCl,1 mm EGTA,1 mm EDTA,1 mm EDTA和1%甲醛),旋转10分钟。将交联细胞用0.125 m(终浓度)甘氨酸淬灭5分钟,然后用冰冷1×PBS洗涤,并在NE1缓冲液(20 mM HEPES-KOH pH 7.9,10 mm Kcl,10 mm KCl,1 mmMgCl2,1 mm MGCL2,1mm dithiothiothreitol,0.1%triton x-100 x-100补充中及以上的roche trite)中,并补充了ROCHE),并补充了ROCHE)。在4°C下旋转10分钟。用CNR洗涤缓冲液(20毫米HEPES pH 7.5、150 mm NaCl,0.5%牛血清白蛋白和0.5 mM补充蛋白酶抑制剂)洗涤核两次,并用乳甲虫抑制剂孵育,并用乳甲甲酰胺蛋白-A(CONA)(CONA)(CONA)束降低了CNR结合Buffer(CNR Buffer buffer)(20 mmmmm hemm hemm hemm hemm hemmheh。99)。CaCl2和1 mM MNCL2)在4°C下持续10分钟。将CONA珠结合的核在4°C下在CNR抗体缓冲液(CNR洗涤缓冲液补充的CNR洗涤缓冲液中,添加了0.1%Triton X-100和2 mM EDTA)和1:50RXRα抗体(细胞信号技术,Clone D6H10,3085)。用CNR TRITON洗涤缓冲液洗涤CONA珠绑定的核(添加了0.1%Triton X-100),然后重新悬浮并在4°C下在切割和运行的抗体缓冲液和2.5μlPAG-MNASE(Epicypher)中孵育60分钟。此后,用切割和运行的triton洗涤缓冲液洗涤Cona垂束两次核, 在每样品中加入2μl100mM CaCl2之前,将重悬于100μl的Triton洗涤缓冲液中,并在冰上孵育5分钟。将样品在冰上孵育30分钟,然后通过在340 mM NaCl,20 mM EDTA,4 mM Egtazic Acid,0.1%Triton X-100和50μgML-1 RNASEA)中加入100μl2×停止缓冲液(340 mM NaCl,20 mM EDTA,4 mM Egtazic)孵育30分钟,然后在37°C孵育10分钟。在磁体上捕获了结合的cona核,并收集了含有切割的DNA片段的上清液。在使用PCI试剂(苯酚:氯仿:Isoamyl obloce,Millipore,Millipore)之前,将上清液与2μL的10%十二烷基硫酸钠和2.5μl20 mg Ml -1蛋白酶K一起在70°C下孵育4小时。在洗脱缓冲液(1 mM Tris -HCl pH 8.0和0.1 mM EDTA)中,将DNA片段与乙醇和糖原在-20°C下沉淀过夜。

  使用Nebnext Ultra II DNA库预备套件为Illumina和Nebnext多重寡聚生成CNR测序文库,用于Illumina。使用1×SPRI珠(Beckman)纯化PCR放大的文库,并在15μlEB缓冲液(Qiagen)中洗脱。所有CNR库均使用40 bp配对末端读取在Illumina NextSeq上进行了测序。

  按照制造商的说明,使用Direct-Zol RNA MicroPREP KIT(Zymo Research)从FACS分离的HFSC中分离总RNA。可选的DNase I处理均包含在所有样品准备中,RNA在无DNase/rnase水中洗脱。使用Agilent 2100生物分析仪确定RNA样品的质量和浓度。所有用于测序的样本均具有RNA完整性(RIN)编号> 8.5。如所述,RNA样品用于逆转录(RT -QPCR)或大量RNA测序的QPCR。

  根据制造商的指南,使用Illumina Trueseq标准mRNA库试剂盒(非链式,多A选择),使用可比较的RNA来制备大量RNA测序库。然后,使用单端运行(在Weill Cornell医学院的基因组核心设施)将图书馆在Illumina Novaseq 6000上进行了唯一的条形码,合并和测序。

  按照制造商的说明,使用上标III逆转录酶(Thermo Fisher Scientific)对等效的RNA进行反转录。为了使跨样品归一化cDNA量,使用了B2M的引物。将cDNA与基因特异性引物(补充表6)和SYBR绿色PCR策划者(Sigma Aldrich)混合,并在应用生物系统7900HT快速实时PCR系统上运行。

  修剪的FASTQ文件是从洛克菲勒大学的基因组资源中心(SCRNA-sequering,本研究)获得的,或从先前出版的Telogen和ANAI-II HFSC SCRNA-SCRNA-SCRNA-SCRNA-SCRNA-SCRNA核心核心(We Quern-Core)(We Quecoment corecornion-prulkient corlient corlient corlient cornellient-prull cornilliond cornillions;使用Star(v2.6)69将读取与小鼠参考基因组(UCSC释放MM39)对齐。使用鲑鱼(V.1.4.0)70将每个基因的表达值量化为每百万(TPM)的原始计数和转录本,并使用tximport(v.1.12.3)71使用rstudio(v.3.4.2)在R(v.3.6.4.2)中汇总为R(v.3.6.1)。

  对于R中的差异基因表达分析,低检测基因(最小平均读数计数 <10) were filtered before DESeq2 analysis (v.1.16.1)72. Differential expression modelling used a negative binomial distribution and Wald test. Genes were differentially expressed for log2[fold-change]>| 1 |并调整了p< 0.05. Heat maps and bar graphs illustrating differential gene expression were constructed in a Python environment (detailed in next paragraph).

  Analysis and visualization of the data were conducted in a Python environment built on Pandas (v.2.0.1), NumPy (v.1.24.2)73, SciPy (v.1.10.1)74, scikit-learn (v.1.2.0), SCANPY (v1.9.3)75, AnnData (v.0.9.1)75, matplotlib (v.3.7.1)76 and seaborn (v.0.13.1)77 packages. Raw count and metadata matrices for 1,489 single ORS cells across the hair cycle were loaded in SCANPY as an AnnData object. Single cell data was preprocessed to remove lowly detected genes (expressed in <75 cells) and cells with low complexity libraries (<2,000 genes detected). SCANPY was used to normalize counts per cell, and highly variable genes were detected. Prior to dimensionality reduction by principal component analysis (PCA), data were centred and scaled. PCA was performed on highly variable genes, with 100 components and the svd_solver using ‘arpack’ (SCANPY default setting). To construct a k-nearest neighbours graph on Euclidean distance, 41 principal components were used (which captured 25% of the variance in the data). Data was visualized using UMAP in SCANPY, and clustering was done using the Leiden algorithm (with a resolution setting of 0.5). Cluster resolution was chosen after iterating through resolution parameters from 0.1 to 0.75, as best capturing both hair follicle cycle stages and anatomic location (upper bulge region/upper ORS versus hair germ/upper-middle ORS versus lower ORS). Marker gene expression based on the literature7,11,63,78, together with the FACS markers each population was sorted on, was used to identify clusters. SCANPY was used to visualize selected marker genes in dot plots, or as normalized counts visualized on UMAPs.

  Differential gene expression based on cluster identity was used in DESeq2 to identify genes that varied as cells transitioned from late anagen growth phase to catagen. Differential expression was performed as described for bulk RNA-sequencing, with the modification of a threshold of 0.75 to construct Wald tests of significance. Gene set enrichment analysis (GSEA) on differentially expressed genes was performed using GSEA software (v.4.3.2)79,80, and run with the MSigDB 2022 mouse database. Gene set terms with false discovery rate < 0.1 and showing high normalized enrichment scores in catagen cells were considered interesting. To construct gene set scores based on the GSEA identified terms the corresponding Mus musculus gene lists were obtained by Amigo2 through the Gene ontology consortium. The SCANPY tl.score_genes function was used to compute the average expression of each gene set across single cells, and normalized to a randomly sampled reference set of genes81,82. The resulting gene set scores were colour coded on corresponding UMAP visualizations of the data.

  Trimmed FASTQ files were obtained from the Rockefeller University’s Genome Resource Center and aligned to the mouse reference genome (UCSC release mm39) using Burrows-Wheeler Aligner (BWA, v.0.7.18), using BWA-MEM with default parameters. The output.sam files were name-sorted and duplicate reads were marked and removed using SAMtools (v.1.17)83. Peaks were called on each replicate using MACS3 (v.3.0.0) using the callpeak command, BAMPE, and a mappable genome estimate of 1.87 × 109 (from the ENCODE pipeline). The fraction of reads in peaks was calculated using bedTools (v. 2.31.0)84 and used to scale bigwig files equivalently in deepTools (v.2.0.0)85. Bigwig files were created from deduplicated, pooled replicate bam files using deepTools, and normalized as reads per genome coverage. Pooled replicate bigwig files were also used to calculate peak coverage matrices to plot heatmaps of centred differential peaks, extended by 1 kb upstream and downstream. Differential peak analysis was done in DESeq2, using read count matrices across each individual replicate from concatenated, merged union peak sets from each replicate. These union peak sets were created separately for in vivo samples and in vitro samples. Differential analysis used negative binomial modelling, and Wald’s test for significance. To assign peaks to nearest expressed gene, part of the Inferelator-prior (v.0.3.8)86 package was used. Peaks were assigned to genes if they fell 50 kb upstream or 5 kb downstream of the gene body and were curated for expression using either scRNA-seq (in vivo samples) or bulk RNA-seq (in vitro samples). To make sure that all potential enhancers for genes related to the apoptotic cell clearance programme were identified, any unassigned intergenic peaks within approximately 200 kb of phagocytosis-related genes were manually curated. If no genes were expressed transcriptionally in the interval between phagocytic gene and unassigned intergenic peak, the intergenic peak was considered a potential enhancer for said gene. Peaks of interest were visualized using the integrated genome viewer (IGV) software (v.2.13.2), together with.bed files of differential peaks.

  Motif enrichment analysis for in vivo samples was performed in two ways: First, the MEME suite (v. 5.5.2) package XSTREME87 in web browser format was used to search for motifs enriched in differential peaks, using as background the union set of all peaks detected, and the JASPAR 2022 vertebrate CORE transcription factor motif database, with lengths of 6–18 bp specified. Both known and de novo enriched motifs were collapsed to clusters based on similarity and ranked based on adjusted P value. Second, the transcription factor occupancy prediction by investigation of ATAC-seq signal (TOBIAS, v.0.14.0)88 framework was used to perform chromatin footprinting analysis. In brief, replicate-pooled bam files read coverage across the genome was calculated and corrected for Tn5 transposase cutting bias before footprint scores were calculated within the union set of called peaks. TOBIAS footprint scores were used to compute differential binding between anagen and catagen pooled replicates, or between Rxra wild-type and cKO pooled replicates. RXR-family catagen bound footprints were visualized in IGV by pooling each individual RXR-family member’s bed footprint file.

  Trimmed FASTQ files were obtained from the Rockefeller University’s Genome Resource Center and aligned to the mouse reference genome (UCSC release mm39) using Burrows-Wheeler Aligner (BWA), using BWA-MEM with default parameters. The output.sam files were name-sorted and duplicate reads were marked and removed using SAMtools (v.1.17)83 Reads were filtered to less than 121 bp using SAMtools (v.1.3.1). BAM files for each replicate were combined using Samtools. Bigwig files were generated using Deeptools (v.3.1.2) with reads per kilobase of transcript per million mapped reads (RPKM) normalization and presented with Integrative Genomics Viewer software. CNR peaks were called using SEACR (v.1.3)89 from bedGraph files generated from RPKM-normalized Bigwig files (bigWigToBedGraph, UCSC Tools) using stringent setting and a numeric threshold of 0.01.

  All data from every experiment were included for analysis unless an error was detected via failed positive or negative controls; in that case the entire experiment was excluded from analysis. Measurements were taken from independent distinct samples, unless stated otherwise. Statistical methods were not used to predetermine sample size. Experiments were not randomized or blinded, given the lack of ambiguity in phenotypes observed and internal controls used.

  Statistical and graphical analyses were performed in Jupyter Notebooks, running a custom Python environment built as described in the single cell sequencing analysis section. Sample sizes, replicates and statistical tests used are indicated in each figure legend. Unless otherwise stated, unpaired two-tailed Student’s t-tests with a 95% confidence interval were performed to test for pair-wise differences among the means. Data are visualized as box-and-whisker plots, with the box representing the first to third quartiles of the data set, the median line inside the box, and the whiskers extending a maximum of 1.5 times the inter-quartile range. Observations that fall outside this range are plotted independently. For clarity, each observation in a data set is also visualized as a point overlaid on the box plot. Whenever representative plots or images are shown, data sets with similar results were generated from additional n >3个独立的生物学重复,从单独的小鼠或两个独立的细胞培养实验中进行了分离的生物学重复。这项研究中的所有复制尝试都是成功的。通常,由于复杂的遗传模型和样品中明显的表型差异,实验并非以盲目的方式进行随机或进行。

  有关研究设计的更多信息可在与本文有关的自然投资组合报告摘要中获得。

左文资讯声明:未经许可,不得转载。